Course File Checking Mechanism

- 1. Faculty need prepare the course file for all courses allotted to him/her. Course file must contain the following documents.
 - i. Institute Academic calendar
 - ii. Personal authenticated time table
 - iii. Department Vision, Mission, PO, PEO and PSO's
 - iv. Approved syllabus
 - v. Approved students list for assigned course
 - vi. Course plan (May use Ioncudos Format) –ISE plan, course articulation matrix, List of probable ICT tools and active learning tools to be used during course delivery and assessment.
 - vii. UT1 and UT2 Question paper and sample answer sheets
 - viii. Conduct and upload Course end survey on Moodle
 - ix. ESE Question paper and Model Answer
 - x. CO -PO Attainment Calculation (as per standard template circulated earlier)
 - xi. Attainment Analysis & Action taken report
 - xii. Upload study material on Moodle and provide the corresponding links
 - xiii. Add recent journal paper relevant to your course contents.
- 2. Faculty will get it checked from Module Coordinator of the department.
- 3. If Module coordinator finds any lacunae in the course file, he/she will discuss this with concerned faculty and get it done from him. Finally, Module coordinator will give a remark on a form (Annexure-II) Guidelines regarding course file levels are given in Annexure-I
- 4. Module coordinator will submit the Annexure-II report to HoD.
- 5. HoD will verify this report with random file checking and submit the report (Annexure-III) to the Dean Academics.
- 5. Based on the report of Annexure-III, Academic Planning & Implementation team will call the files randomly from the departments for verification.

K. E. Society's

Rajarambapu Institute of Technology, Sakharale (An Autonomous Institute affiliated to Shivaji University, Kolhapur)

Academic Calendar: 2023-2024 (Semester-I)

F. Y. B. Tech to Final Year B. Tech, F. Y. M. Tech, F. Y. MBA, F. Y. MBA (IEV)

Wk		16	Aı	igust 202	3	6.7	. 44	Particulars
j	S	М	Т	w	r	F	S	
1			1	2	3	4	5	August 7 to 18 : Deksharambh- Student Induction Program' for F. Y. B. Tech
2	6	7	8	9	10	11	12	August 17 to 18 : Induction program for F. Y. MBA & F. Y. MBA-IEV students
3	13	14	15	16	17	18	19	August 21 : Commencement of Instructional Activities for Semester I
4	20	21	22	23	24	25	26	August 28 to 31 : Declaration of ISE plan for all courses
			29	30	31			
5	27	28	29	30	31	Probah	le Holida	nys: Independence Day: 15 th August, Raksha Bandhan: 30 th August.
cagen	ic Days:	09	Contamb	2023	F. 1	770000	IL MONA	13. Inspection 0-5). 10 1/18-11
		.,	Septemb	W	т	F	s	September 21 to 23 : Unit Test -1
	S	M	T	**		I	2	September 29 to 30 Display of attendance & defaulter list for month of August & September 2023 and counselling of
	7					+	-	students
6	3	4	5	6	7	8	9	
7	10	11	12	13	14	15	16	
8	17	18	19	20	21	22	23	
9	24	25	26	27	28	29	30	
caden	nic Days:	24				Probab	le Holid	ays: Ganesh Chaturthi: 19 th September, Eid-e-Milad: 28 th September.
			Octobe	r 2023	3/4		500 c.	; Technical Events of all Departments.
	S	M	Т	W	т	F	S	1. Civil-Vastu 2. CSE-Technospere 3. Electrical -Enthuse 4. MBA-Vision
10	1	2	3	4	5	6	7	October 13 to 14 : Virangula - Cultural Event of RIT.
11	8	9	10	11	12	13	14	October 16 : Sharadanyas 2023
12	15	16	17	18	19	20	21	October 20 to 21 : Capstone project Review-I October 30 to 31 : Display of attendance & defaulter list for month of October 2023 and counselling of students
13	22	23	24	25	26	27	28	October 20 to 21
14	29	30	31					And Nov. I : Unit Test -2
Acade	mic Days	20	1	1		Proba	hle Holi	days: Birth Anniversary of Mahatma Gandhi : 2 nd October, Dussehra: 24 th October.
			Novemi	ber 2023		12	3216	
	S	M	т	w	Т	F	S	November 24 to 25 : Capstone project Review-II
				1	2	3	4	November 27 to 28 : Display of attendance & defaulter list for month of November 2023 and counselling of students
15	5	6	7	8	9	10	11	
16	12	13	14	15	16	17	18	1
17	19	20	21	22	23	24	25	1
	-	27	28	29	30	+	1	-
18	26	1		4.7	1 30	Proba	hle Halie	lays: Diwali:12th to 17th November
Acade	mic Days	: 41	0	2002		FIODE	ore Holle	myst Zittati (Zitt o Tritti ottomos)
le .	Т _	T	T	er -2023	T	TE	s	December 6 : End of Instructional Activities
	S	M	T	W	T	F	-	December 7 : Submission of ISE+UT 1+ UT 2 marks to exam center
	-			Name of Street		1	2	December 8 : DPC/DPGC meeting to finalize 'XX' grades by department
19	3	4	5	6	7	8	9	December 9 : ADC meeting and display of final 'XX' grade and detention list
20	10	11	12	13	14	15	16	December 13 to 27 : End Semester Examination for Theory Course
21	17	18	19	20	21	22	23	December 28 to 29 : End Semester Examination for Practical Course & Capstone project
22	24	25	26	27	28	29	30	January 10 (2024) : Result Declaration
23	31							
Acade	mic Days	: 19		- 0				Probable Holidays: Christmas: 25th December.
		-		mic Day			MG U.FS	15th January, 2024: Commencement of Instructional Activities for Semester II of F. Y. B. Tech

Commencement and End of Instructional Activities

UT1, UT2, ESE

Cultural and Technical Events

Holiday

Sunday

Coordinator Academic

Dean Academics

Revision No./Date- 8/17-10-2023

K.E.Society's Rajarambapu Institute of Technology,Rajaramnagar Department of Mechanical Engineering Personal Time Table 2023-24 / PART-I

Staff Name: Dr.S.D. Patil

				The second second															
PG.	. Lectures:	ıres:	3	Prac	Practicals:	4	Tuto	Tutorials:				III	ED	CAP	TRE	MinPro	Som		
DO	Lectures:	ıres:	9	Prac	Practicals:	4	Tuto	Tutorials:		Pro	Project:			2			The second	Total	19
Sr.No	Time		Monday			Tuesday			Wedensday	ay	-	Thursday			Friday			Saturday	
	09:10																		
0	To																į		
	10:10																		
~	P	SY-A	ETH	M404															
	11:10				M Tech														
	11:10				MTH	TE Lab	PG-ThCL												
ч	2							SY.A	ETH	M401	B Tec	B Tech Cap-Project	lect						
	12:10																		
-	12:10																		
m	Ĵ.									LUNCH	LUNCH BREAK								
	12:55																		
	12:55	В.ТЕСН		TRIB.							1 C 3 F	70 20							
4	To 01:55	Ω	<u>S</u>	Lab				M Tech			8		CR206	MT1	AIC	CR205			
	01:55				14 81	H Lao	H	MT4	TELab	TE Lab PG-ThCL									
10	1 0	MT1	AIC	CR205							B Tec	B Tech Cap-Project		M Tech	AIC	CR205			
	02:55													-					
	02:55																Section 1		
9	2									RECESS	ESS								
	03:10																		
	03:10																		
2	2				SY-A	ETH	M401												
	04:10													R TECH.					
	04:10												The state of the s	<u> </u>	ICE Lab	CNCL1			
®	٩							В.ТЕСН	PE-IV-ICE	CR206									
	05:10							0											
	05:10																		
6	2			(
-	06:10		_	<		_	_		-		37	-							

Time Table Incharge

Vision

To transform the department into center of excellence by synergizing teaching, learning and research to produce globally competent, innovative and entrepreneurial Mechanical Engineers.

Mission

- To develop state of the art facilities to stimulate faculty, staff and students to create, analyze, apply and disseminate knowledge.
- To build the competency to transform students into globally competent mechanical engineers by imparting quality education.
- To collaborate with research organizations, reputed educational institutions, industries and alumni for excellence in teaching, research and consultancy practices.

Programme Educational Objectives (PEOs):

- Graduates will contribute to social reformation through their devotion in science and technology leading to uplifted standard of living.
- Graduates will provide solutions to global technological challenges being entrepreneurs, consultants and researchers following ethical practices.
- Graduates will update themselves through lifelong learning such as higher studies, cutting edge research, skill enhancement and other professional activities.

Programme Outcomes (POs):

After successful completion of B. Tech. (Mechanical) program students will be able to:

- Apply the knowledge of mathematics, science, engineering fundamentals, and mechanical engineering to the solution of complex engineering problems.
- Identify, formulate, review research literature, and analyze complex mechanical engineering problems reaching substantiated conclusions using first principles of mathematics, natural sciences, and engineering sciences.
- Design solutions for complex mechanical engineering problems and design system components or processes that meet the specified needs with appropriate consideration for the public health and safety, and the cultural, societal, and environmental considerations.
- Use research-based knowledge and research methods including design of experiments, analysis and interpretation of data, and synthesis of the information to provide valid conclusions.

- Create, select, and apply appropriate techniques, resources, and modern engineering and IT tools including prediction and modeling to complex mechanical engineering activities with an understanding of the limitations.
- Apply reasoning informed by the contextual knowledge to assess societal, health, safety, legal and cultural issues and the consequent responsibilities relevant to the professional engineering practice.
- Understand the impact of the professional engineering solutions in societal and environmental contexts, and demonstrate the knowledge of, and need for sustainable development.
- Apply ethical principles and commit to professional ethics and responsibilities and norms of the engineering practice.
- Function effectively as an individual, and as a member or leader in diverse teams, and in multidisciplinary settings.
- Communicate effectively on complex mechanical engineering activities with the
 engineering community and with society at large, such as, being able to comprehend and
 write effective reports and design documentation, make effective presentations, and give
 and receive clear instructions.
- Demonstrate knowledge and understanding of the engineering and management principles
 and apply these to one's own work, as a member and leader in a team, to manage projects
 and in multidisciplinary environments.
- Recognize the need for, and have the preparation and ability to engage in independent and life- long learning in the broadest context of technological change.

Program Specific Outcomes (PSOs):

After successful completion of B. Tech. (Mechanical) program student will be able to:

- Use Company standards, national and international standards like IS BS, SAE, ISO, ASTM etc for designing and manufacturing of mechanical components and systems.
- Engage professionally in industries or as an entrepreneur by applying manufacturing, design, thermal and management practices.

Rajarambapu Institute of Technology, Rajaramnagar

(An Autonomous Institute, affiliated to Shivaji University, Kolhapur)
S. Y. B. Tech. Syllabus

To be implemented for 2022-26 Batch Department of Mechanical Engineering

Class:- S Y B Tech Mech.	Semester-III
Course Code :ME2134	Course Name : Engineering Thermodynamics

L	T	P	Credits
3			3

Course Description:

The aim of this course is to provide students the basic concepts of thermodynamic systems and their applications. It also covers the basic properties of gases, liquids and vapors (specific heat capacities), energy, entropy, enthalpy, exergy, anergy, laws of thermodynamics, vapor power cycles; ideal gas mixtures; and efficiencies of energy conversion systems, such as boilers, turbines, condensers, pump and the use of steam tables to gather energy properties of the steam at different conditions. The effective moving the heat energy generated in the various processes in the steam power plant is computed.

Course Learning Outcomes:

After successful completion of the course, students will be able to,

- 1. Apply thermodynamics principles to mechanical engineering applications
- 2. Describe entropy, change in entropy and increase of entropy principle.
- 3. Differentiate between available and unavailable energy with examples.
- Recognize the properties of pure substances and use thermodynamic property tables charts.
- 5. Apply mathematical fundamental to study the properties of steam gas and gas mixtures
- 6. Explain the air and vapor power cycles and calculate cycle performance.

Prerequisite:

Students should know Concept of energy, work, heat and conversion between them.

	Course Content	
Unit No	Description	Hrs.
1.	Basic Concepts: Thermodynamics system, Microscopic & macroscopic point of view, thermodynamic system and control volume, thermodynamic properties, processes and cycles, Thermodynamic equilibrium, Quasi-Static process, Zeroth law of thermodynamics First law of Thermodynamics: First law for a closed system undergoing a cycle and change of state, energy, PMM1, first law of thermodynamics for steady flow process, steady flow energy equation applied to nozzle, diffuser, boiler, turbine, compressor, pump. (Numerical Treatment)	06
2.	Second law of thermodynamics: Limitations of first law of thermodynamics, Kelvin Planck and Clausius statements and their equivalence, PMM2, causes of irreversibility, Carnot	06

K.E. Society's

S. Y. B. Tech. Syllabus

To be implemented for 2022-26 Batch

Department of Mechanical Engineering

	Department of Mechanicar Engineering	
	theorem, corollary of Carnot theorem, thermodynamic temperature scale. Entropy: Clausius theorem, property of entropy, inequality of Clausius, entropy change in an irreversible process, principle of increase of entropy, entropy change for non-flow and flow processes, third law of thermodynamics (Numerical Treatment)	
	Availability: Energy of a heat input in a cycle, exergy destruction in heat transfer process, exergy of finite heat capacity body, exergy of closed and steady flow system, irreversibility second law efficiency (Numerical Treatment).	06
4.	Properties of gases and gas mixtures: Mole and Mass fraction, Dalton's and Amagat's Law. Properties of gas mixture — Molar mass, gas constant, density, change in internal energy, enthalpy, entropy and Gibbs function. Avogadro's law, equation of state, ideal gas equation, Vander Waal's equation, reduced properties, law of corresponding states, compressibility chart, Gibbs Dalton law, internal energy; enthalpy and specific heat of a gas mixtures, Simple Calculations (Numerical Treatment).	06
5.	Properties of Pure Substances: Formation of steam and its thermodynamic properties, p-v, p-T, T-v, T-s, h-s diagrams. p-v-T surface. Use of Steam Table and Mollier Chart. Determination of dryness fraction. Application of 1 st and 2 nd law for pure substances (Numerical Treatment).	06
6,	Air and Vapor Power Cycles: Air standard cycles, Carnot, Otto and Diesel, Carnot cycle using steam, limitations of Carnot cycle, Rankine cycle, representation on T-s and h-s planes, thermal efficiency, specific steam consumption. Work ratio, effect of steam supply pressure and temperature, condenser pressure on the performance. (Numerical Treatment).	06

References: -

Text Books:

- P.K. Nag, Engineering Thermodynamics, Tata McGraw Hill, New Delhi.
- Ballaney P.L., Thermal Engineering, Khanna Publishers, New Delhi.
- Kumar and Vasandani, Thermal Engineering, Metropolitan Book Co, Delhi.
- R. Yadav, Steam & Gas Turbines, CPH Allahabad.
- B. K. Sarkar, Thermal Engineering, Tata McGraw Hill.
- R. K. Rajput, Thermal Engineering, Laxmi Publications, New Delhi.
- Mahesh M Rathore, Thermal Engineering, McGraw Hill Education, New Delhi.

Reference Books:

- J P Holman, Thermodynamics, McGraw Hill, London.
- Wylen Van, G. J. & Sonntag R. E., Fundamentals of Classical Thermodynamics, John Wiley & Son, 6th edition, 2002.
- Yunus A. Cengel, Thermodynamics an Engineering Approach, Tata McGraw Hill.

Data Book:

S. C. Jain, Steam Tables, Birla Publications Pvt. Ltd. Delhi, 16th edition, 2007.

Rajarambapu Institute of Technology (RIT)

Mechanical Engineering

Curriculum: B.Tech. in ME 2023-2024 (2022-2026 cycle)

Semester: 3

Course: Engineering Thermodynamics (ME2032)

Course faculty: Dr. Sharad D. Patil

Course Outcomes (COs):

At the end of the course the student should be able to:

- 1. Apply thermodynamics principles to mechanical engineering applications
- 2. Describe entropy, change in entropy and increase of entropy principle
- 3. Differentiate between available and unavailable energy with examples
- 4. Recognize the properties of pure substances and use thermodynamic property tables, charts
- 5. Apply mathematical fundamental to study the properties of steam gas and gas mixtures
- 6. Explain the air and vapor power cycles and calculate cycle performance

Course Articulation Matrix: Mapping of (COs) with (POs)

Course Outcomes (COs) / Program Outcomes (POs)	PO _1	PO _2	PO _3	PO _4	PO _5	PO _6	PO _7	PO _8	PO _9	PO _10	PO _11	PO _12	PSO _1	PSO _2
1. Apply thermodynamics principles to mechanical engineering applications	3				1									
2. Describe entropy, change in entropy and increase of entropy principle	3													
3. Differentiate between available and unavailable energy with examples	3													
4. Recognize the properties of pure substances and use thermodynamic property tables, charts	3				1									
5. Apply mathematical fundamental to study the properties of steam gas and gas mixtures	3													
6. Explain the air and vapor power cycles and calculate cycle performance	3		3		1									

Rajarambapu Institute of Technology (RIT)

Mechanical Engineering

Course Content

Content	Hrs
Chapter No. 1 - Basic Concepts and First Law of Thermodynamics Basic Concepts: Thermodynamics system, Microscopic & macroscopic point of view, thermodynamic system and control volume, thermodynamic properties, processes and cycles, Thermodynamic equilibrium, Quasi-Static process, Zeroth law of thermodynamics. First law of Thermodynamics: First law for a closed system undergoing a cycle and change of state, energy, PMM1, first law of thermodynamics for steady flow process, steady flow energy equation applied to nozzle, diffuser, boiler, turbine, compressor, pump, (Numerical Treatment).	6
Chapter No. 2 - Second Law of Thermodynamics and Entropy Second law of thermodynamics: Limitations of first law of thermodynamics, Kelvin Planck and Clausius statements and their equivalence, PMM2, causes of irreversibility, Carnot theorem, corollary of Carnot theorem, thermodynamic temperature scale. Entropy: Clausius theorem, property of entropy, inequality of Clausius, entropy change in an irreversible process, principle of increase of entropy, entropy change for non-flow and flow processes, third law of thermodynamics (Numerical Treatment).	6
Chapter No. 3 - Availability Energy of a heat input in a cycle, exergy destruction in heat transfer process, exergy of finite heat capacity body, exergy of closed and steady flow system, irreversibility and Gouy-Stodola theorem and its applications, second law efficiency (Numerical Treatment).	6
Chapter No. 4 - Properties of Gas Mixture and Thermodynamic Relations Mole and Mass fraction, Dalton's and Amagat's Law. Properties of gas mixture – Molar mass, Gibbs Dalton law gas constant, (Numerical Treatment). Thermodynamic Relations: Change in internal energy, enthalpy, entropy and Gibbs function. Joule-Thomson Coefficient, Clausius Clapeyron equation.	6
Chapter No. 5 - Properties of Pure Substances Phase Change Process, Formation of steam and its thermodynamic properties, p-v, p-T, T-v, T-s, h-s diagrams. p-v-T surface. Use of Steam Table and Mollier Chart. Determination of dryness fraction. (Numerical Treatment). Equation of state, ideal gas equation, Vander Waal's Equation, Avagadro's law, reduced properties, law of corresponding states, compressibility chart.	6
Chapter No. 6 - Air and Vapor Power Cycles Air standard cycles, Carnot, Otto and Diesel, Carnot cycle using steam, limitations of Carnot cycle, Rankine cycle, representation on T-s and h-s planes, thermal efficiency, specific steam consumption. Work ratio, effect of steam supply pressure and temperature, condenser pressure on the performance. (Numerical Treatment).	6 hrs

Textbooks:

1. "Engineering Thermodynamics" by Onkar Singh (1st edition, 2010)

Rajarambapu Institute of Technology (RIT)

Mechanical Engineering

- 2. "Fundamentals of Engineering Thermodynamics" by Michael J. Moran, Howard N. Shapiro, Daisie D. Boettner, and Margaret B. Bailey (9th edition, 2017)
- 3. "Engineering Thermodynamics" by P.K. Nag (5th edition, 2013)
- 4. "Thermodynamics for Engineers" by Kenneth A. Kroos and Merle C. Potter (1st edition, 2020)

Reference Books:

- 1. "Thermodynamics: Principles and Applications" by John P. O'Connell and Giorgio V. Chau (1st edition, 2021)
- 2. "Thermodynamics: An Engineering Approach" by Yunus A. Çengel and Michael A. Boles (9th edition, 2020)
- 3. "Thermodynamics: Concepts and Applications" by Stephen R. Turns (1st edition, 2005)

Chapter wise Plan

Course Code and Title: ME2032 / Engineering Thermodynamics	S
Chapter Number and Title: 1 - Basic Concepts and First Law of Thermodynamics	Planned Hours: 6 hrs

Lesson Schedule: -

Lecture No Portion covered per hour	Planned Date	Delivery Date	Activities planned
1. Thermodynamics system, Microscopic & macroscopic point of view, thermodynamic system and control volume	21/8/23		
2. Thermodynamic properties, processes and cycles, Thermodynamic equilibrium	22/8/23		
3. Quasi-Static process, Zeroth law of thermodynamics	23/8/23		-
4. First law for a closed system undergoing a cycle and change of state, energy, PMM1, first law of thermodynamics for steady flow process	28/8/23		LT/GD
5. Steady flow energy equation applied to nozzle, diffuser, boiler, turbine, compressor, pump	29/8/23		

Rajarambapu Institute of Technology (RIT)

Mechanical Engineering

6. Numerical on First law of thermodynamics	30/9/23	
---	---------	--

Course Code and Title: ME2032 / Engineering Thermodynamics	
Chapter Number and Title: 2 - Second Law of Thermodynamics and Entropy	Planned Hours: 6 hrs

Lesson Schedule:-

Lecture No Portion covered per hour	Planned Date	Delivery Date	Activities planned
7. Limitations of first law of thermodynamics, Kelvin Planck and Clausius statements and their equivalence, PMM2	4/9/23		
8. Causes of irreversibility, Carnot theorem, corollary of Carnot theorem, thermodynamic temperature scale	5/9/23		
9. Clausius theorem, property of entropy, inequality of Clausius	69/23		LT/GD
10. Entropy change in an irreversible process, principle of increase of entropy	11/9/23		,
11. Entropy change for non-flow and flow processes, third law of thermodynamics	12/9/23		
12. Numerical on entropy	13/9/23		

Course Code and Title: ME2032 / Engineering Thermodynamics			
Chapter Number and Title: 3 - Availability	Planned Hours: 6 hrs		

Lesson Schedule:-

Lecture No Portion covered per hour	Planned Date	1175	Activities planned
	Land Allert A		•

Rajarambapu Institute of Technology (RIT)

Mechanical Engineering

13. Energy of a heat input in a cycle, exergy destruction in heat transfer process	18/9/23					
14. Exergy of finite heat capacity body, exergy of closed and steady flow system	18/9/23	-				
15. irreversibility and Gouy-Stodola theorem and its applications	20/9/23	-	LT/GD/FC			
16. second law efficiency	25/9/23					
17. Numerical on Availability-Part 1	26/9/23					
18. Numerical on Availability-Part 2	27/9/23					
Course Code and Title: ME2032 / Engineering Thermodynamics						

Planned Hours: 6 hrs

Chapter Number and Title: 4 - Properties of Gas Mixture and

Lesson Schedule: -

Thermodynamic Relations

Lecture No Portion covered per hour	Planned Date	Delivery Date	Activities planned
19. Mole and Mass fraction, Dalton's and Amagat's Law. Properties of gas mixture – Molar mass, gas constant, density, change in internal energy, enthalpy, entropy	2/10/23		
20. Gibbs function. Avogadro's law, equation of state	3/10/23		2
21. Ideal gas equation, Vander Waal's equation,	4/10/23		
22. Reduced properties, law of corresponding states, compressibility chart, Gibbs Dalton law	9/10/23		LT/GD
23. Joule-Thomson Coefficient, Clausius Clapeyron equation,	10/10/23		***y
24. Numerical	11/10/23		

Rajarambapu Institute of Technology (RIT)

Mechanical Engineering

Course Code and Title: ME2032	/ Engineering Thermodynamics
-------------------------------	------------------------------

Chapter Number and Title: 5 - Properties of Pure Substances | Planned Hours: 6 hrs

Lesson Schedule:-

Lecture No Portion covered per hour Planne Date		Delivery Date	Activities planned
25. Formation of steam and its thermodynamic properties	16/10/23		
26. p-v, p-T, T-v, T-s, h-s diagrams. p-v-T surface	17/10/23		
27. Use of Steam Table and Mollier Chart. Determination of dryness fraction	18/10/23		LT/GD
28. Application of 1st and 2nd law for pure substances	23/10/23		
29. Numerical-Part 1	24/10/23		
30. Numerical-Part 2	25/10/23		

Course Code and Title: ME2032 / Engineering Thermodynamics

Chapter Number and Title: 6 - Air and Vapor Power Cycles | Planned Hours: 6 hrs

Lesson Schedule: -

Lecture No Portion covered per hour		Delivery Date	Activities planned
31. Carnot and Otto air standard cycle	30/10/23		
32. Diesel air standard cycle and comparison of air standard cycles	1/11/23		
33. Layout of steam power plant and its terminologies	2/11/23		LT/GD/CS
34. Carnot and Rankine cycle and its analysis	6/10/23		BITODICS

Rajarambapu Institute of Technology (RIT)

Mechanical Engineering

35. Effect of steam supply pressure and temperature, condenser pressure on the performance	7/10/23	<i>f</i>	
36. Numerical	8/10/23		

Abbreviations:

Activities:	Lecture (LT), Think pair share (TPS), Flipped Classroom (FC), Jigsaw(JS), Project Based Learning(PBL), Presentations(PNS), Demonstration (DM), Laboratory Visit (LV), Group Discussion (GD),
8	Seminar(SM), Industrial Visits (IV), Case Studies (CS)

ISE & ESE Evaluation Scheme

Evaluation	Weightage	Particulars	Marks
y w/	5. I	QUIZ	07
ISE	20%	Project base learning	08
		Industrial visit quiz	05
UT-01	23%	UT-01 (25 marks/1Hr)	25
UT-02	23%	UT-02 (25 marks/1Hr)	25
ESE	50%	ESE (100 marks /3Hrs)	50

Date:

Module coordinator Academic Coordinator Head of Department

Sr.No	EnrollNo	Student Name	Div	Batch	Batch Strength	Admitted Y/N
1	2006052	JADHAV ROHAN PARSHURAM	Α	A1	1	
2	2106006	FAHIM ARIF MULLA	Α	A1	2	
3	2106007	INGALE SHUBHAM SACHIN	Α	A1	2	
4	2106016	VIPUL PRATAP SUTAR	Α	A1	3	
5	2206001	JADHAV MANDAR SANJAY	Α	A1	4	
6	2206002	SAVANT HARSHAD GORAKSHANATH	Α	A1	5	
7	2206003	JADHAV RANVEER PRAVIN	Α	A1	6	
8	2206004	KADAM HARSHAD CHANDRAKANT	Α	A1	7	
9	2206005	MANE SIDDHESHVARI VASANT	Α	A1	8	
10	2206006	MANE AKSHATA BALKISAN	Α	A1	9	
11	2206007	GANBAVALE HARSHVARDHAN RAMESH	Α	A1	10	
12	2206008	JADHAV ASHITOSH ISHWARA	Α	A1	11	
13	2206009	OTARI UTKARSHA UMESH	Α	A1	12	
14	2206010	SURYAWANSHI TANVI PRAKASH	Α	A1	13	
15	2206011	PATIL SIDDHESH ARUN	Α	A1	14	
16	2206012	JADHAV SNEHA SURYAKANT	Α	A1	15	
17	2206013	PATIL TANAY SHARADCHANDRA	Α	A1	16	
18	2206014	GURAV VARADRAJ RAMCHANDRA	Α	A1	17	
19	2206015	PAWAR JAYANTRAO SAMPATRAO	Α	A1	18	-
20	2206016	PATIL SUJAL RAMCHANDRA	Α	A1	19	
21	2206017	JADHAV SAMARTH RAJARAM	Α	A1	20	
22	2206018	YEVALE OMKAR SANJAY	Α	A1	21	
23	2106017	DHANARAJ SHIVAJI BACHAL	Α	A2	1	
24	2206019	GHARGE RAJVARDHAN RANJEET	Α	A2	2	
25	2206020	SAWANT JAYANT YUVRAJ	Α	A2	3	407
26	2206021	JANGAM PRANAV SUNIL	Α	A2	4	
27	2206022	SHINDE KOMAL MANOJ	Α	A2	5	
28	2206023	KUMBHAR TANUSHREE HANMANT	Α	A2	6	
29	2206024	TAMBEWAGH PRATHMESH RAJENDRA	Α	A2	7	
30	2206025	LANDAGE MANSI NITIN	Α	A2	8	
31	2206026	DOIPHODE SUDHIR DNYANESHWAR	Α	A2	9	
32	2206027	PATIL SAKSHI KIRAN	Α	A2	10	
33	2206028	GODASE SOURABH SUNIL	Α	A2	11	
34	2206029	PATIL VARAD SAMBHAJI	Α	A2	12	
35	2206030	RASAL SHRIRAM SANTOSH	Α	A2	13	
36	2206031	GADKAR TUSHAR YOGESH	Α	A2	14	
37	2206032	SURYAWANSHI GOURI RUPESH	Α	A2	15	13.
38	2206033	SHAIKH RIYAJ SALIM	Α	A2	16	
39	2206034	PATIL SANDESH SOMNATH	Α	A2	17	
40	2206035	MANE RAJVARDHAN MOHAN	Α	A2	18	
41	2206036	NANNIKAR SAMARTH GANESH	Α	A2	19	
42	2206037	SABANE HARSHAL SUDHAKAR	Α	A2	20	
43	2106031	ABHIJIT SISALE	Α	A3	1	

44	2206038	GHORPADE SATYAJEET SAMBHAJIRAO	Α	А3	2	
45	2206039	MORE TANISHQ JAYWANT	Α	А3	3	
46	2206040	DONAVADE OM AJITKUMAR	Α	А3	4	
47	2206041	DAGADE ROHAN CHANDRAKANT	Α	А3	5	
48	2206042	KADAM ADITYA VIJAY	Α	A3	6	
49	2206043	GADGIL VIHANG SAMEER	Α	А3	7	
50	2206044	KADAM AJIT RAJU	Α	А3	8	
51	2206045	BHATMARE SANKET RAJENDRA	Α	A3	9	
52	2206046	DUBAL YASHRAJ PRAMOD	Α	А3	10	
53	2206047	GHADAGE SANIKA VIJAY	Α	А3	11	
54	2206048	CHAVAN ANURAJ SACHIN	Α	А3	12	
55	2206049	PATIL SANKET SUNIL	Α	А3	13	
56	2206050	CHANKOTI AKSHAY MALLESHI	Α	A3	14	
57	2206051	SUPANEKAR SOHAM NILESH	Α	A3	15	
58	2206052	HUBALE ADITYA ASHOK	Α	A3	16	
59	2206053	PATIL OMKAR LUXMAN	Α	A3	17	
60	2206054	KUMBHAR SHARAYU SHASHIKANT	Α	A3	18	
61	2206055	LOLE PRATIK VITTHAL	Α	A3	19	
62	2206056	CHAVAN BHAVESH BHARAT	Α	A3	20	
63	2106061	PRASAD HUBALE	Α	A4	1	
64	2206057	BAVADE PRATIK RAHUL	Α	A4	2	
65	2206058	MULLA SANIYA SHOUKAT	Α	A4	3	
66	2206059	MORE GANESH VISHWAS	Α	A4	4	
67	2206060	SOLASE YASH SUNIL	Α	A4	5	
68	2206061	KAMBLE BHAGYASHRI HANMANT	Α	A4	6	
69	2206062	VHANANVAR SANDIP RAMESH	Α	A4	7	
70	2206063	DALVI PRANAV PRASAD	Α	A4	8	
71	2206064	BUCHADE YASH PRASHANT	Α	A4	9	
72	2206065	SALUNKHE VAISHNVI SACHIN	Α	A4	10	
73	2206066	SARGAR JEEVAN MAHADEV	Α	A4	11	
74	2206067	PATIL AVADHUT MAHESH	Α	A4	12	
75	2206068	THORAWADE BHUMI PRABHAKAR	Α	A4	13	
76	2206069	PATIL VIRAJ SHASHIKANT	Α	A4	14	
77	2206070	GAIKWAD TEJAS ANIL	Α	A4	15	
78	2206071	PATIL PRANAV PRAKASH	Α	A4	16	
79	2206072	RELEKAR ASHUTOSH HANMANT	Α	A4	17	
80	2206073	PATIL SOHAM RAMCHANDRA	Α	A4	18	
81	2206074	SURYAWANSHI AMRUTA BHARAT	Α	A4	19	
82	2206075	SHINDE SANKET DILIP	Α	A4	20	
83	2206076	MULLA RISHAD KALANDAR	В	B1	1	
84	2206077	PATIL NISHANT MAHESH	В	B1	2	
85	2206078	TALAP NIKHIL RAJARAM	В	B1	3	
86	2206079	SHEWALE VIGHNESH JAYWANT	В	B1	4	
87	2206080	ANUSE RITESH RAVSAHEB	В	B1	5	
88	2206081	MANE RAHUL RAJESH	В	B1	6	

Activity Base Teaching plan

Course: Engineering Thermodynamics

Class: SY B.Tech Mechanical

Sr. No	Activity Name	Lecture No	Content
1.	Think-Pair- Share	3	Process, properties
2.	Activity-Jig Saw	10	PMM-I and II
3.	Poll	13	2nd Law of thermodynamics
4.	Reciprocal teaching	18	Exergy
5.	TPS	21	Mole, mass fraction
6.	Poll	22	Gas laws
7.	PBL	23	Steam properties, h,s, v,
8.	Poll	24	Critical P &T
9.	Think-Pair- Share	25	PVTsurfaces
10	Case Study	31	Steam power plant Sugar factory
11	Reciprocal teaching	33	Air std cycles
12	Four Corner	36	Improvement in vapor power cycle

Dr Sharad D Patil

	- 11	
1		
1	-	
ш		
L		

Rajarambapu Institute of Technology, Rajaramnagar Department of Mechanical Engineering Attainment of COs

	Program: Mechanical Engineering	E	ME2033 Engineering Thermodynamics	g nics	Class: S	Class: S Y B Tech.	Semester III	Academic Year: 2022-23	: 2022-23
			Q	Direct Assessment	ment		Indirect Assessment		
Sr. No.	CO Statement	ISE	UTI	птп	ESE	Attainment Level	(Course End Survey)	Overall Attainment on Scale of 3	Overall Percentage Attainment
	Weigtage	0.2	0.15	0.15	0.5	Weighted Average			
C01	Apply thermodynamics principles to mechanical engineering applications	ю	2	0	2	2.24	æ	2.39	79.61
C02	Describe entropy, change in entropy and increase of entropy principle	ю	8	2	1	2.18	3	2.34	78.04
03	Differentiate between available and unavailable energy with examples	ю	0	1	2	2.06	8	2.25	74.90
CO4	Recognize the properties of pure substances and use thermodynamic property tables, charts	ю	0	2	2	2.24	ю	2.39	79.61
502	Apply mathematical fundamental to study the properties of steam gas and gas mixtures	ю	0	0	2	1.88	e e	2.11	70.20
900	Explain the air and vapor power cycles and calculate cycle performance	8	0	0	2	1.88	æ	2.11	70.20

Overall Attainment=0.8*Direct+0.2*Indirect

(A. D. C.		OOH 1	
O 0,000 h.		Academic/OBE Coordinator	
8	7	Course Coordinator: Prof. S. D. Patii	

Rajarambapu Institute of Technology, Rajaramnagar Department of Mechanical Engineering Attainment of POs

	ME2033	Act a V 3 ::::	Compate	Academic Year:
Program: Mechanical Engineering	Engineering Thermodynamics	Cidasa, 3 i B i ecili.	Jelliestei III	2022-23

		*	<i>y</i>	2.12		T.	d-00	CO-PO Mapping	18					- XX-13	100 miles (100 miles)
CO No.	Overall CO Attainment	P01	P02	F03	P04	POS	P06	P07	P08	P09	PO10	P011	P012	PS01	PS02
C01	2.39	3				1									
C02	2.34	3													
C03	2.25	3													
C04	2.39	3				1									
CO5	2.11	3						H. H. H.							
900	2.11	3													

CO No. PO1 PO2 PO3 PO4 PO5 PO6 PO7 CO1 2.39 0.80 PO6 PO7 CO2 2.34 0.80 PO6 PO7 CO3 2.25 PO6 PO6 PO7 CO4 2.39 PO6 PO7 PO7 CO5 2.11 PO7 PO7 PO7	ttainment PO3 PO10 PO11 PO12 PS01 PO7 PO8 PO9 PO10 PO11 PS01 PS01
---	---

\		
_ HoD △	Academic/OBE-Coordinator	Course Coordinator: Prof. S. D. Patil
Oblank	all the graphy	\mathread \text{\tiny{\text{\tiny{\tinit}\\ \text{\tin}\tint{\text{\text{\text{\tin}\text{\text{\text{\text{\text{\tin}\tint{\text{\text{\tinit}\\\ \tint{\text{\text{\text{\tinit}\tittt{\text{\tinit}\\\ \tint{\text{\text{\text{\text{\tinit}\text{\text{\text{\tinit}\\ \tinithtt{\text{\text{\text{\tinit}\xi}\\tint{\text{\text{\text{\text{\text{\tinit}\xi}\\ \tint{\text{\ti}\tint{\text{\tinithtitt{\tinithtit{\tinithtin}\tint{\text{\tinithtin}\tint{\text{\tinithtint{\text{\tinithtint{\tinithtint{\tinithtint{\tinithtint{\tinithtin\tinithtin{\tinithtint{\tii}\tinithint{\tiinithtint{\tinithtint{\tiinithtint{\tii}\tiin

CO Attainment Action Plan Academic Year 2022-2023 (2021-2025 cycle)

Course Name: Engg Thermodynamics	Course Code:ME2033
Class: S Y B. Tech. in Mechanical	Semester:1 - Semester
Course Teacher: Dr. Sharad D. Patil	

1. CO attainment:

Sr.No.	CO Code	CO Statement	Overall Attainment %
1	CO1	Apply laws of thermodynamics to various flow devices	79.61
2	CO2	Describe entropy, change in entropy and increase of entropy principle	78.04
3	соз	Compute available and unavailable energy of a substance	74.90
4	CO4	Recognize the properties of pure substances and use thermodynamic property tables, charts	79.61
5	CO5	Apply mathematical fundamental to study the properties of steam gas and gas mixtures	70.20
6	CO6	Compute performance of various thermodynamic air and vapor power cycles	70.20

Average marks -43.4 No of students-128

2. Observations from CO attainment:

Attainment for the all CO is satisfactory,

3. Action Plan for improvement of CO attainment:

- Focus will be given on CO5 & CO6 by solving more problems with group assignments

4. Sign of Course In-charge

5. Remark by Head of Department with sign

Stick to your co affairment action plus.

& Dlalager

K.E.Society's

Rajarambapu Institute of Technology, Rajaramnagar (An Autonomous Institute, Affiliated to SUK)

Unit Test-I

S. Y. B. Tech. Mechanical Engineering Semester- III Course Name: Engineering Thermodynamics Course Code: ME2033 Q.P.Code

UT22

Day &Date:	Tuun,	10	111	20	22
Time:					

Max. Marks- 25

Instructions: 1) Figures to the right indicate full marks.

- 2) Assume suitable data if necessary and mention it clearly.
- 3) Use of steam table is allowed.

Q.1 Solve the following

Enroll No

Marks

- (a) i) In a throttling device, what do we get as SFEE when changes in PE CO1 05 and KE are taken zero?
 - 1) $\frac{\delta Q}{dm} \neq 0$ 2) $\frac{\delta W}{dm} \neq 0$ 3) $h_1 = h_2$ 4) none of these
 - ii) Heat and work are
 - 1) Point functions
- 2) System properties
- 3) Path functions
- 4) Intensive properties
- iii) In adiabatic process, Heat Transfer is
- 1) variable 2) zero 3) constant 4) can't be determined
- iv) A system in which energy can crosses the boundary of the system but the mass cannot is known as
- 1) Open System
- 2) Isolated System
- 3) Closed System
- 4) None of the mentioned
- v) The sum of all the microscopic forms of energy is called the _____ of a system.
- 1) Kinetic Energy
- 2) Latent Energy
- 3) Internal Energy
- 4) Potential Energy
- (b) Explain the difference between extensive and intensive properties of CO1 05 the systems with examples

(c) Write the statements of the second law of thermodynamics.

CO₂

05

05

OR

(c) What are the limitations of the first law of thermodynamics?

CO₂

(d) During a process, the temperature of the system rises from 100°C to 200°C. Heat transfer per degree rise in temperature, at each temperature reached during the process is given by

05

$$dQ/dT = 1.005 kJ/K$$

The work done on the system per degree rise in temperature at each temperature reached, is given by

$$dW / dT = (4 - 0.12T) kJ / K$$

Calculate the change in internal energy of the system during the process.

OR

- (d) In a pump, water of 2000 kg/min is compressed from 100 kPa to 1 MPa. CO1 05
 The density of water is 1000 kg/m³ and its temperature does not change.
 The inlet diameter of the pump is 100 mm and outlet diameter is 150 mm, and the inlet is 50 m below the outlet. Determine the work done by the pump.
- (e) Derive general steady flow energy equation as per the first law of CO1 05 thermodynamics.

KE Society's

Rajarambapu Institute of Technology, Rajaramnagar Department of Mechanical Engineering

Result Analysis: Attainment of COs

0	Examination: UT	Cla	ss: S Y B To	ech. MECH		Semo	ester III
	Program: Mechanical Engineering	Mechanical Engineering Thermodynamics					
	Question	Q1(a)	Q1(b)	Q1(c)	Q1(d)	Q1(e)	
	СО	COI	COI	CO2	COI	COI	
	Marks	5	5	5	5	5	Total (25)
-	PRN Number	3.2					47.
1	2106001	0	0	1	0	0	1
2	2106002	4	3	1	0	0	8
3	2106003	2	3	2	0	4	11
4	2106005	3	4	0	0	0	7
5	2106008	3	1	4	0	0	8
6	2106009	5	3	1	0	1	10
7	2106010	5	3	3	5	3	19
8	2106011	4	3	2	1	3	13
9	2106013	1	1	1	0	0	3
10	2106014	4	1	0	0	1	6
11	2106018	2	1	4	5	2	14
12	2106019	5	0	1	0	4	10
13	2106021	3	4	3	0	0	10
14	2106022	5	3	2	0	0	10
15	2106023	5	3	3.5	5	3.5	20
16	2106026	5	3	2	5	1	16
17	2106027	5	2	0.5	0.5	0.5	8.5
18	2106029	4	2	0	0	0	6
19	2106030	3	3.5	4.5	2	4	17
20	2106032	4	2	2	0	0	8
21	2106034	4	0.5	0	1	0	5.5
22	2106035	4	2	0	2	0	8
23	2106037	4	1	0	1	1	7
24	2106039	4	3	3	1	0	11
25	2106041	3	0.5	1	0	0.5	5
26	2106042	4	0	1	0	5	10
27	2106044	4	1	3	0.5	3.5	12

28	2106045	4	2	3	4	4	17
29	2106047	1	1	1	0	0	3
30	2106048	4	3	3	5	5	20
31	2106049	5	1	1	5	1	13

32 2106051 4 2 0 0 0 33 2106052 4 4.5 3.5 2 4.5 34 2106055 5 3 4 3 5 35 2106056 5 1 0 0 0 36 2106057 5 5 3 0 2 37 2106058 4 2 1 0 0 38 2106059 5 3 4 1 5 39 2106060 5 0.5 0 0 0 40 2106065 5 2 2 2 5 4 41 2106068 4 0 3 3 0 42 2106071 5 4 4 5 4 43 2106072 5 3 1 3 2 44 2106074 4 4 4 5 5 45 2106079 4 5 4 0	18.5 20 6 15 7 18 5.5 18 10 22 14 22
34 2106055 5 3 4 3 5 35 2106056 5 1 0 0 0 36 2106057 5 5 3 0 2 37 2106058 4 2 1 0 0 38 2106059 5 3 4 1 5 39 2106060 5 0.5 0 0 0 40 2106065 5 2 2 2 5 4 41 2106068 4 0 3 3 0 0 42 2106071 5 4 4 5 4 43 2106072 5 3 1 3 2 44 2106074 4 4 4 4 5 5 45 2106079 4 5 4 0 4 47 2106081 4	20 6 15 7 18 5.5 18 10 22 14 22
35 2106056 5 1 0 0 0 36 2106057 5 5 3 0 2 37 2106058 4 2 1 0 0 38 2106059 5 3 4 1 5 39 2106060 5 0.5 0 0 0 40 2106065 5 2 2 5 4 41 2106068 4 0 3 3 0 42 2106071 5 4 4 5 4 43 2106072 5 3 1 3 2 44 2106074 4 4 4 5 5 45 2106077 4 1 4 3 0 46 2106079 4 5 4 0 4 47 2106081 4 3 3 1	6 15 7 18 5.5 18 10 22 14 22
36 2106057 5 5 3 0 2 37 2106058 4 2 1 0 0 38 2106059 5 3 4 1 5 39 2106060 5 0.5 0 0 0 40 2106065 5 2 2 5 4 41 2106068 4 0 3 3 0 42 2106071 5 4 4 5 4 43 2106072 5 3 1 3 2 44 2106074 4 4 4 5 5 45 2106077 4 1 4 3 0 46 2106079 4 5 4 0 4 47 2106081 4 3 3 1 3 48 2106083 5 3 3 3 0	15 7 18 5.5 18 10 22 14 22
37 2106058 4 2 1 0 0 38 2106059 5 3 4 1 5 39 2106060 5 0.5 0 0 0 40 2106065 5 2 2 5 4 41 2106068 4 0 3 3 0 42 2106071 5 4 4 5 4 43 2106072 5 3 1 3 2 44 2106074 4 4 4 5 5 45 2106077 4 1 4 3 0 46 2106079 4 5 4 0 4 47 2106081 4 3 3 1 3 48 2106083 5 3 3 3 3 0	7 18 5.5 18 10 22 14 22 12
38 2106059 5 3 4 1 5 39 2106060 5 0.5 0 0 0 40 2106065 5 2 2 5 4 41 2106068 4 0 3 3 0 42 2106071 5 4 4 5 4 43 2106072 5 3 1 3 2 44 2106074 4 4 4 5 5 45 2106077 4 1 4 3 0 46 2106079 4 5 4 0 4 47 2106081 4 3 3 1 3 48 2106083 5 3 3 3 3 0	18 5.5 18 10 22 14 22 12
39 2106060 5 0.5 0 0 0 40 2106065 5 2 2 5 4 41 2106068 4 0 3 3 0 42 2106071 5 4 4 5 4 43 2106072 5 3 1 3 2 44 2106074 4 4 4 5 5 45 2106077 4 1 4 3 0 46 2106079 4 5 4 0 4 47 2106081 4 3 3 1 3 48 2106083 5 3 3 3 3 0	5.5 18 10 22 14 22 12
40 2106065 5 2 2 5 4 41 2106068 4 0 3 3 0 42 2106071 5 4 4 5 4 43 2106072 5 3 1 3 2 44 2106074 4 4 4 5 5 45 2106077 4 1 4 3 0 46 2106079 4 5 4 0 4 47 2106081 4 3 3 1 3 48 2106083 5 3 3 3 3 0	18 10 22 14 22 12
41 2106068 4 0 3 3 0 42 2106071 5 4 4 5 4 43 2106072 5 3 1 3 2 44 2106074 4 4 4 5 5 45 2106077 4 1 4 3 0 46 2106079 4 5 4 0 4 47 2106081 4 3 3 1 3 48 2106083 5 3 3 3 0	10 22 14 22 12
42 2106071 5 4 4 5 4 43 2106072 5 3 1 3 2 44 2106074 4 4 4 5 5 45 2106077 4 1 4 3 0 46 2106079 4 5 4 0 4 47 2106081 4 3 3 1 3 48 2106083 5 3 3 3 0	22 14 22 12
43 2106072 5 3 1 3 2 44 2106074 4 4 4 5 5 45 2106077 4 1 4 3 0 46 2106079 4 5 4 0 4 47 2106081 4 3 3 1 3 48 2106083 5 3 3 3 0	14 22 12
44 2106074 4 4 4 5 5 45 2106077 4 1 4 3 0 46 2106079 4 5 4 0 4 47 2106081 4 3 3 1 3 48 2106083 5 3 3 3 0	22 12
45 2106077 4 1 4 3 0 46 2106079 4 5 4 0 4 47 2106081 4 3 3 1 3 48 2106083 5 3 3 3 0	12
46 2106079 4 5 4 0 4 47 2106081 4 3 3 1 3 48 2106083 5 3 3 3 0	
47 2106081 4 3 3 1 3 48 2106083 5 3 3 3 0	17
48 2106083 5 3 3 3 0	
	14
49 2106084 5 4 4 3 2	14
	18
50 2106086 4 3 4 5 4	20
51 2106087 4 0.5 1 1 4	10.5
52 2106089 5 5 3 4 4	
53 2106090 4 4 4 2 4.5	18.5
54 2106092 5 2 2 4 4	17
55 2106093 5 3 1 1 1	11
56 2106094 5 3 4 3 5	20
57 2106096 5 4 3.5 2 3	17.5
58 2106097 5 4 0 4 0	13
59 2106099 5 0 3 0.5 0.5	9
60 2106100 5 4 4 3 3	
61 2106101 5 3.5 0.5 3.5 2	14.5
62 2106102 5 3 2 0 0	
63 2106103 5 2 3 5 4.5	
64 2106104 5 2 3 3 4	17
65 2106105 3 2 3 5 4.5	
66 2106108 3 2 0 0 0	
67 2106109 3 2 0 1 1.5	7.5
68 2106110 3 2 2 0 1	8
69 2106112 4 4 3 5 3.5	19.5
70 2106113 4 4 3 5 5	21
71 2106116 4 4 3.5 3.5 4	19
72 2106118 4 4 4 3 5	20
73 2106119 4 1 2.5 1 0.5	9
74 2106120 4 5 4 4 4	21
75 2106122 4 3 0 1 0	8

76	2106123	4	2	0	5		1 11
77	2106124	4	1	3			
78	2106125	3	2	2			
79	2106127	3	1	4			
80	2106128	3	3	2			
81	2106129	2	4	3.5		0	
82	2106025	2.5	1.5	3.5		5	
83	2106040	1	2	2.3			
84	2106107	3	3.5	5		3	
85	2108007	0	1	5			
86	2256001	0	0.5	4		4	11
87	2256002	2.5	2.5	5	1	0	5.5
88	2256003	1	2.5	3	2	5	16
89	2256004	0.5	0.5	2.5	2	2	9
90	2256005	2	1.5	2.5		0	5.5
91	2256006	1	2	4	4	2.5	14
92	2256007	0	0	5	1	2.5	10.5
93	2256007	2	1	5	3.5	5	14
94	2256009	4	0	5	3.5	2	13.5
95	2256010	2.5	1		4	5	18
96	2256010	5	0	5	3.5	4	15
97	2256012	2	1		3	5	18
98	2256013	4	2.5	4 5	4	4	15
99	2256014	2	2.5	5	3.5	4.5	20
100	2256015	2.5	1.5	4	2.5	5	17.5
101	2256016	2.5	2	4	4	0	10.5
102	2256017	3	4	5	4	0	12.5
103	2256018	3	0	5	2	3	19
104	2256019	3	1	5	4.5	0	10
105	2256020	4	2.5	5	4.5	4	17.5
106	2256021	4	2.3	5		5	21.5
107	2256022	3	4	4	3	2	16
108	2256023	4	3.5	5	1.5	5	18
109	2256024	2.5	0	4	2	3	19
110	2256025	3	3.5	5	4.5	0	11.5
111	2256026	2	0.5	4	2	4	16
112	2256027	2	1	3	2	4	12.5 12
113	2256028	4.5	3.5	4	3	3	
114	2256029	3	0	5	4	5	18 17
115	2256030	4	4	4	3.5	2.5	
116	2256031	4	1	4	3.3		18
117	2256032	2	0	5	3	2	16
118	2256033	3	0	5	4		12
119	2256034	4	3	5	4	4	16
	2230034			3	4	5	21

120	2256035	3	0	4	3	0	10
121	2256036	2	3.5	4	4	4	17.5
122	2256037	0	0	4	4.5	4.5	13
123	2256038	3	0	4	3	3.5	13.5
124	2256039	0	2	4	4	4	14
125	2256040	4	1.5	4	2	3.5	15
126	2256041	0	1.5	4	2	. 4	11.5
127	2006052	2	1	0	0	0	3
128	2006096	0	2	0	0	0	2

Questions	Q1(a)	Q1(b)	Q1(c)	Q1(d)	Q1(e)				
CO	CO1	COI	CO2	CO1	CO1				
Marks	5	5	5	5	5				
Threshold %		50							
Threshold Marks	2.5	2.5	2.5	2.5	2.5				
No. of Students Above Threshold Marks	102	54	85	64	69				
Total No. of Students in Class			128						
Percentage Attainment	79.69	42.19	66.41	50.00	53.91				
CO Wise Average Percentage Attainment*	56.4	15		66.41					
Attainment Level**	2			3					

СО	Average Attainment Level**
CO1	2
CO2	3
CO3	
CO4	
CO5	
CO6	

*Calulate CO wise Percentage Attainment Level Manually **Enter the level of Attainment as per Below

Range

0%-33 % = 1

34%-66% =2

67%-100%=3

K.E.Society's

Rajarambapu Institute of Technology, Rajaramnagar (An Autonomous Institute, Affiliated to SUK) Unit Test-II

S. Y. B. Tech. Mechanical Engineering Semester- III Course Name: Engineering Thermodynamics Course Code: ME2033 Q.P.Code

UTIS

Day &Date: Wednesday, 21/12/2022

Time: 11.45 am to 12.45 pm

Enroll No

Max. Marks- 25

Instructions: 1) Figures to the right indicate full marks.

- 2) Assume suitable data if necessary and mention it clearly.
- 3) Use of steam table is allowed.
- Q.1 Solve the following.

Marks

(a) State and prove the Clausius theorem.

CO2 05

-OR-

Establish the inequality of Clausius.

(b) An inventor claims to have develop a heat engine that receives 750 kJ CO2 05 of heat from a source at 550 K and rejecting the waste heat 260kJ to a sink at 290 K. Is this a reasonable claim? Why?

-OR-

A heat source at 800 K loses 2000 kJ of heat to a sink at (a) 500 K and (b) 750 K. Determine which heat transfer process is more irreversible.

- (c) What did you understand by mole fraction, mass fraction, Avagadro's CO4 05 principle and Dalton's law of partial pressure?
- (d) A 500 kg iron block is initially at 200°C and is allowed to cool to 27°C CO3 05 by transferring heat to the surrounding air at 27°C. Determine the reversible work and the irreversibility for this process. (Take Cp = 0.4 kJ/kgK)
- (g) Derive an equation for the exergy of a finite heat capacity body.

CO3 05

Rajarambapu Institute of Technology, Rajaramnagar

Department of Mechanical Engineering

Result Analysis: Attainment of COs

Examination: UT I/2021-22

	Examination: UT II/2022-23		Class: S Y	B Tech.		Sem	ester III
	Program: Mechanical Engineering		Eng	ineering Th	ermodynan	nics	2
	Question	Q1(a)	Q1(b)	Q1(c)	Q1(d)	Q1€	
	CO	CO2	CO2	CO4	CO3	CO3	3
	Marks	5	5	5	5	5	Total (25)
	PRN Number						
1	2006052	NA	NA	NA	NA	NA	0
2	2006096	0	0	0	0	0	0
3	2106001	0.5	1	0	0.5	0	2
4	2106002	2	4	2	0	0	8
5	2106003	5	4	2	0	1	12
6	2106005	4	4	2	0	0	10
7	2106008	1	0.5	4	0.5	4	10
8	2106009	5	5	0	4	0	14
9	2106010	5	5	3.5	1	0	14.5
10	2106011	5	4	3	0	0	12
11	2106013	0	0.5	2	0.5	0	3
12	2106014	5	5	0	0	0	10
13	2106018	0.5	3	0.5	4	0	8
14	2106019	5	4	1	0	0	10
15	2106021	2	0	1	0	0	3
16	2106022	5	0	2	0	0	7
17	2106023	5	3	3	2	4	17
18	2106025	5	4	1	4	2	16
19	2106026	2	2	1	4	0	9
20	2106027	4	4	1	3	0	12
21	2106029	1	3	0.5	4	0	8.5
22	2106030	3	4	1	4	4	16
23	2106032	1	0	0	1	0	2
24	2106034	0	0	0	0	2	2
25	2106035	1	0.5	0	2	4	7.5
26	2106037	1	0	0	3	0	4

27	2106039	4	0.5	0	0	0	4.5
28	2106040	4	0	0	4	0	8
29	2106041	0.5	0.5	1	3	0.5	5.5
30	2106042	3	4	0	0	5	12
31	2106044	4.5	5	4	0	1	14.5
32	2106045	4	3	1	2	2	12
33	2106047	1	4	0	0	1	6
34	2106048	1	1	2	2	4	10

35	2106049	0.5	0	0	0.5	0	1
36	2106051	0	2	0	3	0	5
37	2106052	4	5	3	4	. 0	16
38	2106055	5	4	3	4	4	20
39	2106056	0	0	0	1	0	1
40	2106057	0	4	0	0	0	4
41	2106058	0	0	0	4	0.5	4.5
42	2106059	2	4	0	4	0	10
43	2106060	2	4	0	0.5	0	6.5
44	2106065	4	2	0	0	0	6
45	2106068	4	2	0	0	4	10
46	2106072	4	4	0	3	0	11
47	2106074	5	1	0	1	0	7
48	2106077	5	0	2	0	0	7
49	2106079	1	4	0.5	0	0	5.5
50	2106081	4	2	0	0	4	10
51	2106083	1	0	. 0	0	0	1
52	2106087	0	2	0	1	0	3
53	2106089	2	1	2.5	3	0	8.5
54	2106090	5	3	0	4	3	15
55	2106093	2.5	0	1.5	0	0	4
56	2106071	1	3	0	4	2	10
57	2106084	1	0.5	1	4	1	7.5
58	2106086	1	1	0	1	0	3
59	2106092	3.5	1	0	4	4.5	13
60	2106094	1	3	4	3	4	15
61	2106096	4	5	4	3	0.5	16.5
62	2106097	5	4	3	4	0	16
63	2106099	4.5	5	0	3	0	12.5
64	2106100	4	3	0	3	2	12
65	2106101	3	5	0	3.5	0	11.5
66	2106102	2	0	0	1	0	3
67	2106103	4	5	2.5	2	2	15.5
68	2106104	3	3	0	1	1	8
69	2106105	4	5	0	0	0.5	9.5
70	2106107	2	4	1	3	0	10
71	2106108	5	5	3.5	1.5	5	20
72	2106109	4	4	1	3	4	16
73	2106110	1	0.5	3	1	0	5.5
74	2106112	4	4	3	3	5	19
75	2106113	0.5	2.5	0	0	0.5	3.5
76	2106116	4	4	0	0	4	12
77	2106118	2	5	0	0	4.5	11.5
78	2106119	4	4	0	0	5	13
79	2106120	5	0.5	0	0.5	4	10
80	2106122	0	3	0	0	0	3
81	2106123	5	1	0	3.5	4	13.5

82	2106124	4	2	0	4	0	10
83	2106125	1	0	0.5	3.5	0	5
84	2106127	0	2	0	4	0	6
85	2106128	0	0	0	3.5	0	3.5
86	2106129	5	4	5	5	5	24
87	2108007	2	0	0.5	1.5	0	4
88	2256001	0	2	0	0	0	2
89	2256002	2	0	4	3	0	9
90	2256003	4	2	0	2	2	10
91	2256004	0	2	0	0	0.5	2.5
92	2256005	4	4	4	3	1	16
93	2256006	0	0	1	0	0	1
94	2256007	4	5	0	2	5	16
95	2256007	0.5	4	0	0.5	0.5	5.5
$\overline{}$	2256008	2	4	0	4	0.5	10
96 97	2256010	1	4	0	2	3	10
	2256010	1	1	3	2	1	8
98		1	2	2	2	0	7
99	2256012	4	4	4	4	0	16
100	2256013	0	4	5	2	0	11
101	2256014	1	3	4	3	0	11
102	2256015		3.5	0	0	1.5	9
103	2256016	4	3.5	3	0	3	14
104	2256017	4	NA 4	NA S	NA .	NA	0
105	2256018 2256019	3	4	4	3	4	18
106	2256020	4.5	5		0.5	5	20
107	2256020	4.5	3		2	0	7
108	2256021	4	5		0	4.5	16
109	2256022	0	4		4	1	13
110	2256023	4	2		0.5	1.5	10.5
111	2256024	0	4		0.5	0	
112		0	0		0.5	0.5	
113	2256026						
114	2256027 2256028	0			2.5	2.5	
115					2.3		
116					0	4.5	
117	2256030				3	3	
118		2			2	0.5	
119			4		4	0.5	
120					3.5	4	
121	2256034				5.5		
122	2256035		4		3.5		
123							
124					0		
125					3.5		
126					3		
127	2256040						
128	2256041	4	4	0	2	0	10

Questions	Q1(a)	Q1(b)	Q1(c)	Q1(d)	Q1(e)			
CO	CO2	CO2	CO4	CO3	CO3			
Marks	5	5	5	5	5			
Threshold %		50						
Threshold Marks	2.5	2.5	2.5	2.5	2.5			
No. of Students Above Threshold Marks	59	73	34	53	33			
Total No. of Students in Class			128					
Percentage Attainment	46.09	57.03	26.56	41.41	25.78			
CO Wise Average Percentage Attainment*	51.56		25.56	33.59				
Attainment Level**	2		1	2				

со	Average Attainment Level**
CO1	
CO2	2
CO3	1
CO4	2
CO5	
CO6	

*Calulate CO wise Percentage Attainment
Level Manually

**Enter the level of Attainment as per Below
Range

0%- 33 % = 1

0%- 33 % = 1 34%-66% =2 67%-100%=3

Enro	Enroll. No. K. E. Society's Rajarambapu Institute of Technology, Rajaramnagar		QP No.		
		(An Autonomous Institute, affiliated to SUK) End Semester Examination Feb 2023	E114		
Instru	Tin		Iax Marks:	100	
msut	iction	1. All questions are compulsory. 2. Use of non-programmable calculator is allowed. 3. Assume suitable data if necessary 4. Use of steam table allowed			
Q.1	a)	Show that energy is a property of a system	Marks 08	CO	
V.1	ω)	OR	•		
	a)	Apply steady flow energy equation (SFEE) to develop equation for steam turbine.			
	b)	Air flows steady at the rate of 0.5 kg/s through an air compressor entering at 7 m/s velocity, 100 kPa pressure and 0.95 m³/kg specific volume and leaving at 5 m/s, 700 kPa and 0.19 m³/kg respectively. The internal energy of the air leaving is 90 kJ/kg greater than that of air entering. Cooling water in the compressor jacket absorbs heat from the air at the rate of 58 kW. Compute a. the power input the compressor and b. ratio of inlet pipe diameter to the outlet pipe diameter.		COI	
Q.2	a)	Explain statements of second law of thermodynamics. OR	08	COI	
	a)	Explain the Clausius inequality			
	b)	A Carnot engine absorbs 200J of heat from a reservoir at the temperature of the normal boiling point of water and rejects heat to a reservoir at the temperature of the triple point of water. Calculate the heat rejected, the work done by the engine and the thermal efficiency.		CO2	
Q.3	a)	Derive the equation for availability (Exergy) of a finite body at temperature T.	08	CO3	
	a)	OR Derive the equation for availability (Exergy) of a non-flow process.			
	b)	Calculate the change in exergy when 20 kg of water at 95°C mix with 45 kg of water at 30°C, the pressure being taken as constant and the temperature of the corresponding being 20°C. C _p of water is 4.2 kJ/kgK.	07	CO3	

A (co) 33

ESE_ME2033

Page 1 of 2

Q.4	a)	Derive equation for internal energy of a gas mixture on mass and molar basis. OR							08	CO5
	a)	Explair 1. 2.								
	 b) A gas mixture has the following composition on mole basis: 60 percent N₂ and 40 percent CO₂. Determine the gravimetric analysis of the mixture, its molar mass and gas constant. Repeat the above problem by replacing N₂ by O₂. 									CO5
Q.5	a)	Calculate the missing properties of steam in the following table for water:								CO4
		S. N.	T, °C	P, bar	h, kJ/kg	x	s, kJ/kg.K	Type of steam		
		1.		100	3100					
		2.	500	90						
		3.		0.4		0.9				
		4.	30			0.9				
	b)	Define dry and wet steam. Calculate the dryness fraction of the steam when it expands from 20 bar (dry-saturated) pressure to 0.5 bar pressure isentropically.						08	CO4	
	c)	Explain	triple po	int of wate	er. OR				04	CO4
	c)	Write va	ın der Wa	aals equat		and me	eaning of terr	ns in it.		
Q.6	a)	Explain the methods to improve efficiency of the Rankine cycle.						cycle.	08	CO6
	b)	A simple Rankine cycle works between pressure 18 and 0.8 bar, the initial condition of steam being dry saturated. Calculate: i) The cycle efficiency ii) Work ratio ii) Specific steam consumption.						08	CO6	

c) Draw P-v and T-s diagram Carnot vapor cycle?

OR
c) Draw P-v and T-s diagram for Diesel cycle.

04

CO6

ESE-2023 [QP Code-E114] Date of Exam = 08/02/12023

Q a)
Consider a system which changes its state from state 1 to state 2 by following the path A, and returns from state 2 to state 1 by following the path B (So the system undergoes a cycle. Writing the first law for path A Marks

 $Q_{\rm A} = \Delta E_{\rm A} + W_{\rm A}$

and for path B

 $Q_{\rm B} = \Delta E_{\rm B} + W_{\rm B}$

02 Marks

Fig. Energy-a property of a system

The processes A and B together constitute a cycle, for which

 $(\Sigma W)_{\text{cycle}} = (\Sigma Q)_{\text{cycle}}$ $W_{\text{A}} + W_{\text{B}} = Q_{\text{A}} + Q_{\text{B}}$ $Q_{\text{A}} - W_{\text{A}} = W_{\text{B}} - Q_{\text{B}}$

02 Marks

From equations

or

or

$$\Delta E_{\rm A} = -\Delta E_{\rm B}$$

Similarly, had the system returned from state 2 to state 1 by following the path C instead of path B

$$\Delta E_{\Lambda} = -\Delta E_{C}$$

From equations

$$\Delta E_{\rm B} = \Delta E_{\rm C}$$

Therefore, it is seen that the change in energy between two states of a system is the same, whatever path the system may follow in undergoing that change of state. If some arbitrary value of energy is assigned to state 2, the value of energy at state 1 is fixed independent of the path the system follows. Therefore, energy has a definite value for every state of the system. Hence, it is a point function and a property of the system.

02 Marks

a) OR
The general steady flow energy equation is

$$Q - W_x = (h_2 - h_1) + \frac{\overline{V}_2^2 - \overline{V}_1^2}{2} + g(Z_2 - Z_1)$$
 02
Marks

For Turbine

Turbines and engines give positive power output, whereas compressors and pumps require power input.

For a turbine which is well insulated, the flow velocities are often small, and the K.E. terms can be neglected. The S.F.E.E. then becomes

Fig. Flow through a turbine

$$h_1 = h_2 + \frac{dW_x}{dm}$$

$$\frac{W_x}{m} = (h_1 - h_2)$$
02
Marks

It is seen that work is done by the fluid at the expense of its enthalpy.

Similarly, for an adiabatic pump or compressor, work is done upon the fluid and W is negative. So the S.F.E.E. becomes

$$h_1 = h_2 - \frac{W_x}{m}$$
or
$$\frac{W_x}{m} = h_2 - h_1$$
02
Marks

The enthalpy of the fluid increases by the amount of work input.

or

02 Marks

01 Marks

(a) Writing the steady flow energy equation, we have

$$w\left(u_{1} + p_{1}v_{1} + \frac{\mathbf{V}_{1}^{2}}{2} + Z_{1}g\right) + \frac{dQ}{dt}$$

$$= w\left(u_{2} + p_{2}v_{2} + \frac{\mathbf{V}_{2}^{2}}{2} + Z_{2}g\right) + \frac{dW_{1}}{dt}$$

$$\therefore \frac{dW_{1}}{dt} = -w\left[(u_{2} - u_{1}) + (p_{2}v_{2} - p_{1}v_{1}) + \frac{\mathbf{V}_{2}^{2} - \mathbf{V}_{1}^{2}}{2} + (Z_{2} - Z_{1})g\right] + \frac{dQ}{dt}$$

02 Marks

$$\frac{dW_x}{d\tau} = -0.5 \frac{\text{kg}}{\text{s}} \left[90 \frac{\text{kJ}}{\text{kg}} + (7 \times 0.19 - 1 \times 0.95)100 \frac{\text{kJ}}{\text{kg}} \right]$$

$$+ \frac{(5^2 - 7^2) \times 10^{-3}}{2} \frac{\text{kJ}}{\text{kg}} + 0 - 58 \text{ kW}$$

$$= -0.5 \left[90 + 38 - 0.012 \right] \text{kJ/s} - 58 \text{ kW}$$

$$= -122 \text{ kW}$$
Ans. (a)

01 Marks

Rate of work input is 122 kW. (b) From mass balance, we have

 $w = \frac{A_1 V_1}{v_1} = \frac{A_2 V_2}{v_2}$ $\frac{A_1}{A_2} = \frac{v_1}{v_2} \cdot \frac{V_2}{V_1} = \frac{0.95}{0.19} \times \frac{5}{7} = 3.57$ $\frac{d_1}{d_2} = \sqrt{3.57} = 1.89$ Ans. (b)

Q a) i) There are many valid statements of the second law of thermodynamics. The use of the second law of thermodynamics is not limited to identifying the direction of processes. The second law also asserts that energy has quality as well as quantity. The first law is concerned with the quantity of energy and the transformations of energy from one form to another with no regard to its quality. Preserving the quality of energy is a major concern to engineers, and the second law provides the necessary means to determine the quality as well

02 Marks

as the degree of degradation of energy during a process.

ii) with reference to the heat engine that, even under ideal conditions, a heat engine must reject some heat to a low temperature reservoir in order to complete the cycle. That is, no heat engine can convert all the heat it receives to useful work. This limitation on the thermal efficiency of heat engines forms the basis for the Kelvin-Planck statement of the second law of thermodynamics, which is expressed as follows:

iii) It is impossible for any device that operates on a cycle to receive heat from a single reservoir and produce a net amount of work.

That is, a heat engine must exchange heat with a low-temperature sink as well

as a high-temperature source to keep operating.

FIGURE

A heat engine that violates the Kelvin–Planck statement of the second law.

02 Marks

A refrigerator that violates the Clausius statement of the second law.

- iv) There are two classic statements of the second law—the Kelvin-Planck statement, which is related to heat engines and discussed in the preceding section, and the Clausius statement, which is related to refrigerators or heat pumps.
- v) The Clausius statement is expressed as follows:

It is impossible to construct a device that operates in a cycle and produces no effect other than the transfer of heat from a lower-temperature body to a higher-temperature body.

vi) It is common knowledge that heat does not, of its own volition, transfer from a cold medium to a warmer one. The Clausius statement does not imply that a cyclic device that transfers heat from a cold medium to a warmer one is impossible to construct. In fact, this is precisely what a common household refrigerator does. It simply states that a refrigerator cannot operate unless its compressor is driven by an external power source, such as an electric motor

02 Marks

a)

Let us consider a cycle ABCD (Fig.). Let AB be a general process, either reversible or irreversible, while the other processes in the cycle are reversible. Let the cycle be divided into a number of elementary cycles, as shown. For one of these elementary cycles

02 Marks

Fig. Inequality of Clausius

$$\eta = 1 - \frac{dQ_2}{dQ}$$

where dQ is the heat supplied at T_1 and dQ_2 the heat rejected at T_2 .

Now, the efficiency of a general cycle will be equal to or less than the efficiency of a reversible cycle.

$$1 - \frac{dQ_2}{dQ} \le \left(1 - \frac{dQ_2}{dQ}\right)_{rev}$$

or
$$\frac{dQ_1}{dQ} \ge \left(\frac{dQ_2}{dQ}\right)_{\text{rev}}$$
or
$$\frac{dQ}{dQ_2} \le \left(\frac{dQ}{dQ_2}\right)_{\text{rev}}$$
Since
$$\left(\frac{dQ}{dQ_2}\right)_{\text{rev}} = \frac{T}{T_2}$$

$$\therefore \frac{dQ}{dQ_2} \le \frac{T}{T_2}$$

or
$$\frac{dQ}{T} \le \frac{dQ_2}{T_2}$$
, for any process AB, reversible or irreversible.

For a reversible process

$$ds = \frac{dQ_{rev}}{T} = \frac{dQ_2}{T_2}$$
Marks

Hence, for any process AB

$$\frac{dQ}{T} \le ds$$

Then for any cycle

$$\int \frac{dQ}{T} \le \int ds$$

Since entropy is a property and the cyclic integral of any property is zero

$$\oint \frac{\mathrm{d}Q}{T} \le 0$$

This equation is known as the inequality of Clausius. It provides the criterion of the reversibility of a cycle.

If
$$\oint \frac{dQ}{T} = 0$$
, the cycle is reversible,

$$\oint \frac{dQ}{T} < 0$$
, the cycle is irreversible and possible

02 Marks

 $\oint \frac{dQ}{r} > 0$, the cycle is impossible, since it violates the second law.

b)

01 Marks

Given:

Heat Input = Q_H = 200 J, Source Temperature = 373 K, Sink Temperature = 273 K

i) Carnot Efficiency =
$$1 - \frac{T_l}{T_H} = 1 - \frac{273}{373} = 0.2680 = 26.80\%$$

02 Marks

By applying the first law of thermodynamics QH-QL=W
OL = QH-W

iii) Heat Rejected = 200-53.61=146.38 J

02 Marks

Let us consider a hot gas of mass m_g at temperature T when the environmental temperature is T_0 (Fig.). Let the gas be cooled at constant pressure from state 1 at temperature T to state 3 at temperature T_0 and the heat given up by the gas, Q_1 , be utilized in heating up reversibly a working fluid of mass m_{wf} from state 3 to state 1 along the same path so that the temperature difference between the gas and the working fluid at any instant is zero and hence, the entropy increase of the universe is also zero. The working fluid expands reversibly and adiabatically in an engine or turbine from state 1 to state 2 doing work W_E , and then rejects heat Q_2 reversibly and isothermally to return to the initial state 3 to complete a heat engine cycle.

Fig. Available energy of a finite energy source

02 Marks

Here,

..

$$Q_{1} = m_{g} c_{p_{g}} (T - T_{0}) = m_{wf} c_{p_{wf}} (T - T_{0})$$

$$= \text{Area } 1 - 4 - 5 - 3 - 1$$

$$m_{g} c_{p_{g}} = m_{wf} c_{p_{wf}}$$

$$\Delta S_{gas} = \int_{T}^{T_{0}} m_{g} c_{p_{g}} \frac{dT}{T} = m_{g} c_{p_{g}} \ln \frac{T_{0}}{T} \text{ (negative)}$$

$$\Delta S_{wf} = \int_{T_{0}}^{T} m_{wf} c_{p_{wf}} \frac{dT}{T} = m_{wf} c_{p_{wf}} \ln \frac{T}{T_{0}} \text{ (positive)}$$

$$\Delta S_{univ} = \Delta S_{gas} + \Delta S_{wf} = 0$$

$$\Delta S_{\text{univ}} = \Delta S_{\text{gas}} + \Delta S_{\text{wf}} = 0$$

$$Q_2 = T_0 \Delta S_{\text{wf}} = T_0 m_{\text{wf}} c_{p_{\text{wf}}} \ln \frac{T}{T_0} = \text{Area } 2 - 4 - 5 - 3$$

$$\therefore \text{ Available energy} = W_{\text{max}} = Q_1 - Q_2$$

$$02$$
Marks

$$= m_{g} c_{p_{g}} (T - T_{0}) - T_{0} m_{g} c_{p_{g}} \ln \frac{T}{T_{0}}$$

$$= \text{Area } 1-2-3-1$$

Therefore, the available energy or exergy of a gas of mass $m_{\rm g}$ at temperature T is given by

$$AE = m_{\rm g} c_{\rm p_{\rm g}} \left[(T - T_0) - T_0 \ln \frac{T}{T_0} \right]$$
 02
Marks

a) O

Let us consider a closed system and denote its initial state by parameters without any subscript and the final dead state with subscript 0. The availability of the system A, i.e., the maximum useful work obtainable as the system reaches the dead state,

Marks

02

Marks

02

$$A = (W_0)_{\text{max}} = E - E_0 + p_0 (V - V_0) - T_0(S - S_0)$$

$$= \left(U + \frac{mV^2}{2} + mgz\right) - (U_0 + mgz_0) + p_0(V - V_0) - T_0(S - S_0)$$
02
Marks

If K.E. and P.E. changes are neglected and for unit mass, the availability becomes

$$a = u - u_0 + p_0(v - v_0) - T_0(s - s_0)$$

$$= (u + p_0v - T_0s) - (u_0 - p_0v_0 - T_0s_0)$$

$$= \phi - \phi_0$$
02
Marks

where ϕ is the availability function of the closed system.

If the system undergoes a change of state from 1 to 2, the decrease in availability will be

$$a = (\phi_1 - \phi_0) - (\phi_2 - \phi_0)$$

= $\phi_1 - \phi_2$
= $(u_1 - u_2) + p_0 (v_1 - v_2) - T_0(s_1 - s_2)$

This is the maximum useful work obtainable under the given surroundings.

b) Solution The available energy of a system of mass m, specific heat c_p , and at temperature T, is given by

A.E. =
$$mc_p \int_{T_0}^{T} \left(1 - \frac{T_0}{T}\right) dT$$

(A.E.) = Available energy of 20kg of water at 95°C

$$= 20 \times 4.2 \int_{273+95}^{273+95} \left(1 - \frac{293}{T}\right) dT$$

$$= 84 \left[(368 - 293) - 293 \ln \frac{368}{293} \right]$$

$$= 690.671 \text{ kJ}$$

02 Marks

(A.E.) = Available energy of 45kg of water at 30°C

$$45 = 189 \left[(303-293) - 293 \ln \frac{303}{293} \right]$$
= 31.53 kJ

Total available energy

٠.

...

$$(A.E.)_{total} = (A.E.) + (A.E.)$$
20
45

02 Marks

After mixing, if t is the final temperature

$$20 \times 4.2 (95 - t) = 45 \times 4.2(t - 30)$$
$$t = \frac{20 \times 95 + 45 \times 30}{20 + 45}$$
$$= 50^{\circ} \text{ C}$$

Total mass after mixing = $_{20} +_{45} = _{65}$ kg

(A.E.)₆₅ Available energy of 65 kg of water at 50°C

$$= 4.2 \times 65 \left[(323 - 293) - 293 \ln \frac{323}{293} \right]$$

$$= 392.69 \text{ kJ}$$
02
Marks

- .. Decrease in available energy due to mixing
 - = Total available energy before mixing
 - Total available energy after mixing

01 Marks

- **=** 722.208-392.69
- ₌ 329.518 kJ
- Q a) The internal energy u is assumed to be a function of T and v, i.e.

u = f(T, v)

04 Marks

 $du = \left(\frac{\partial u}{\partial T}\right)_{V} dT + \left(\frac{\partial u}{\partial v}\right)_{T} dv$

When gases at equal pressures and temperatures are mixed adiabatical work, as by inter-diffusion in a constant volume container, the first lathat the internal energy of the gaseous system remains constant, and exshow that the temperature remains constant. Hence the internal emixture of gases is equal to the sum of the internal energies of the components, each taken at the temperature and volume of the mixture (the 'partial' internal energies). This is also true for any of the therm properties like H, $C_{\rm v}$, $C_{\rm p}$, S, F and G and is known as Gibbs theorem. on a mass basis

$$mu_{\rm m} = m_1 u_1 + m_2 u_2 + \dots + m_c u_c$$
$$u_{\rm m} = \frac{m_1 u_1 + m_2 u_2 + \dots + m_c u_c}{m_1 + m_2 + \dots + m_c}.$$

04 Marks

a)

OR

Mole fraction (molar analysis)

It is the ratio of the number of moles of a given component to the total moles of all components

$$y_i = \frac{n_A}{n_A + n_B + \dots + n_Z}$$
, $n_i = \text{moles of } i$

Dalton's law of partial pressures:

It states: the total pressure of a mixture of gases is the sum of their individual partial pressures

02 Marks

Mass fraction (Gravimetric analysis)

It is the ratio of the mass of the component to the mass of the mixture

$$m_f = \frac{m_A}{m_m},$$

02 Marks

· Amagat's law of additive volumes:

The volume of a gas mixture is equal to the sum of the volumes each gas would occupy if it existed alone at the mixture temperature and pressure

•
$$V_m = \sum_{i=1}^k V_i (T_m : P_m)$$
 V_i component volume

Note: that equ exact for ideal gases, approximate for real gases

$$V_{\perp}$$
:=volume fraction

 V_{n}

$$\begin{bmatrix} \operatorname{Gas} A \\ P, T \\ V_A \end{bmatrix} - \begin{bmatrix} \operatorname{Gas} B \\ P, T \\ V_B \end{bmatrix} \equiv \begin{bmatrix} \operatorname{Gas} \operatorname{mixture} \\ A + B \\ P, T \\ V_A + V_B \end{bmatrix}$$

02 Marks

b) Given – Molar mass of $N_2 = 2X14=28$

Molar mass of $O_2 = 2X16 = 32$ Molar mass of $CO_2 = 1X12 + 2X16 = 44$ Composition on mole basis 60% N₂ and 40% CO₂ Hence,

01 Marks

Molar mass =

$$M_m = \sum y_i \times M_i = 0.60 \times 28 + 0.40 \times 44 = 34.4 \frac{kg}{kmol}$$
Now Gas Constant = 03
Marks

 $R = \frac{R_u}{M_m} = \frac{8.314}{34.4} = 0.2416 \frac{kJ}{kaK}$

Composition on mole basis

60% O₂ and 40% CO₂ Hence,

Molar mass =

$$M_m = \sum_i y_i \times M_i = 0.60 \times 32 + 0.40 \times 44 = 36.8 \frac{kg}{kmol}$$

$$R = \frac{R_u}{M_m} = \frac{8.314}{36.8} = 0.225 \frac{kJ}{kgK}$$
 03 Marks

Q a) 5

Sr. No.	T °C	P, bar	h, kJ/kg	X	s, kJ/kgK	Type of steam
1	400	100	3100	1	6.599	Superheated
2	500	90	3386.8	1	6.66	Superheated
3	75.89	0.4	2404.98	0.9	7.0065	Wet
4	30	0.04	2313.33	0.9	7.6532	Wet

0.5 Marks For each answer

Dry Steam -

When steam is free from water vapour then it is called as Dry Steam

02 Marks

The steam which contains the water vapour are known as wet steam

P1 = 20 bar (Dry Saturated), P2 = 0.5 bar

02 Marks

S1 = 6.337 kJ/kgKAs expansion is isentropic hence,

S1=S2

S2 = 6.337 kJ/kgK

02

Also

Marks

S2 = Sf + x * Sfg

Where

Sf=1.091 kJ/kgK

Sfg=6.504 kJ/kgK

6.337=1.091+x*6.504

02

x = 0.80

c)

02 Marks

The triple point of a substance is the temperature and pressure at which the three phases (gas, liquid, and solid) of that substance coexist in thermodynamic equilibrium.

01 Marks

The triple point of water is used to define the Kelvin(K), the base unit of thermodynamic temperature in the International System of Units (SI). The triple point of water is 273.16 K, $0.01 \circ \text{C}$, or $32.018 \circ \text{F}$

OR

· It is given by,

02 Marks

$$\frac{a}{\left(P+\frac{a}{v^2}\right)(v-b)=RT}$$

• Van der Waals equation of state considers two effects which were not considered in ideal-gas equation of state. The term a/v^2 accounts for intermolecular forces of attraction and b accounts for volume occupied by the gas molecules.

• The constants a and b are given by,

$$a = \frac{27R^2T^2_{cr}}{64Pcr} \text{ and } b = \frac{RT_{cr}}{8Pcr}$$

Increasing Efficiency of Rankine Cycle

02 Marks

Thermal efficiency of the ideal Rankine cycle can be increased by: (a) Increasing the average temperature at which heat is transferred to the working fluid in the boiler, or (b) decreasing the average temperature at which heat is rejected from the working fluid in the condenser.

Lowering the Condenser Pressure

The condensers of steam power plants usually operate well below the atmospheric pressure. There is a lower limit to this pressure depending on the temperature of the cooling medium.

Side effect: Lowering the condenser pressure increases the moisture content of the steam at the final stages of the turbine – can cause blade damage, decreasing isentropic efficiency.

02 Marks

The effect of lowering the condenser pressure on the ideal Rankine cycle.

Superheating the Steam to High Temperatures

FIGURE '

The effect of superheating the steam to higher temperatures on the ideal Rankine cycle.

Superheating the steam increases both the net work output and heat input to the cycle. The overall effect is an increase in thermal efficiency of the cycle.

Superheating to higher temperatures will decrease the moisture content of the steam at the turbine exit, which is desirable – avoid erosion of turbine blades.

The superheating temperature is limited by metallurgical considerations. Presently the highest steam temperature allowed at the turbine inlet is about 620°C.

Increasing the Boiler Pressure

FIGURE

The effect of increasing the boiler pressure on the ideal Rankine cycle.

Increasing the boiler pressure raises the average temperature at which heat is transferred to the steam. This, in turns increases the thermal efficiency of the cycle.

Note:

For a fixed turbine inlet temperature, the cycle shifts to the left and the moisture content of steam at the turbine exit increases.

This side effect can be corrected by reheating the steam.

02 Marks

b)

01 Marks

Boiler Pressure = P2 = P3 = 18 bar Condenser Pressure = P1 = P4 = 0.8 bar At state 3 h3= hg at 18 bar = 2794.8 kJ/kg s3 = sg at 18 bar = 6.375 kJ/kgK

At state 4 s3 =s4 s4 = 6.375 kJ/kgK also s4 @0.18 bar = (sf+x*sfg) @0.18 bar 6.375 = 0.804 + x*7.142x = 0.78

Now

h4 = hf4 + x * hfg4

= 242+0.78*2363.9 = 2085.84

02

Marks

At state 1

h1 = hf @ 0.18 bar = 242 kJ/kg, v1 = vf @ 0.18 bar = 0.001016

Now W p = v1*(P2-P1)*100 = 0.001016*(18-0.8)*100 = 1.8105 kJ/kg

At state 2

 $W_p = h2-h1$

h1 = h2+W p

h2 = 242+1.8105 = 243.81

Cycle Analysis

Turbine Work = Wt = h3 - h4 = 2794.8 - 2085.84 = 708.96 kJ/kg

Pump Work = 1.8105 kJ/kg

Net Work = Wt-Wp = 708.96-1.8105 = 707.14 kJ/kg

02

Marks

Heat Input = h3-h2 = 2794.8 - 243.81 = 2550.99

Answer 1 =

Cycle Efficiency = Wnet/Heat Input = 707.14/2550.99 = 0.2772 = 27.72%

01 Marks

Answer 2 =

Work Ratio = Wnet/Wt = 707.14/708.96 = 0.99

01

Marks

Answer 3 =

Specific Steam Consumption = 3600/Wnet = 5.09 kg/kWh

01

02 Marks

Carnot Vapour Cycle T-S Diagram

02 Marks

OR
a) P-v Diagram for Diesel Cycle

Rajarambapu Institute of Technology, Rajaramnagar Department of Mechanical Engineering Result Analysis: Attainment of COs

	Examination: ESE/2022-23	Cl	ass:S Y	B Tech.			- da _{i-t}			are a	Semes	ter III	We.		88.	
	Program: Mechanical Engineering						5H 1133	Enginee	ering The	ermody	namics					
	Question	Ol(a)	O1(b)	O2(a)	O2(b)	03(a)	ОЗ(Б)	Q4(a)	Q4(b)	Q5(a)	Q5(b)	Q5(c)	06(2)	Q6(b)	000	
	co	COI	COI	COI	CO2	CO3		CO5	COS	CO4	CO4	CO4	CO6	CO6	Q6(e) CO6	
	Marks	8	7	8	7	8	7	8	7	8	8	4	8	8	4	Total (100)
	PRN Number	11-11										•		_ 0		
1	2106001	1	1	. 0	0	0	0.5	0	0	4	0.5	0	0	0	2	9
2	2106002	5	C	3	0	5	0	4	0	_	0	3	3		2	28
3	2106003	8	1	. 3	1	3		8	1	_	0	3.5	4		4	43
4	2106005	0	0	1	0	0	0	3	0	3	0	0	5	5	2	19
5	2106008	NA	NA	2	0	7		7	1	4	8	3	2	0	3	41
6	2106009	2	0	7	0	0	0	5	0	4	1	3	0	4	2	28
7	2106010	1	0	6	7	8	5	7	1	1	0	4	7	1	4	52
8	2106011	5	5	5	6	6	6	0	0	5	1	2	6	4	2	53
9	2106013	0	0.5	2	0	0	0.5	4	0	0	0	2	1	1	0	11
10	2106014	7	0	6	0	7	_	5	0	0	0	4	7	0	4	40
11	2106018	7	0.5	2	0	1	_	8	2	5	0	0	6	4	0	41.5
12	2106019	6	4	5	0	4	_	5	0	5	0	3	5	3	0	40
13	2106021	6	0	6	0	8	_	6	0	6	0	4	8	0	3	47
14	2106022	6	5	4	0	0	0	2	0	5	2	3	0	0	1	28
15	2106023	7	4	8	7	8	6	6	3	3.5	4	4	4	5	2	71.5
16	2106025	7	7	6	6	7	0	4	5	6	0	0	2	6	3	59
17	2106026	1	4	4	7	3	0	7	0	5	0	0	0	6	4	41
18	2106027	0	5	2	5	2	0	4	0	6	0	2	0	0	3	29
19	2106029	0	2	2	5	1	0	6	0	4.5	0	3	0	0.5	2	26
20	2106030	8	5	3	0	7	6	4	0	4	5	3	7	8	3	63
21	2106032	5	1	NA	NA	NA	NA	6	0	0	0	2	0	0	2	16
22	2106035	5	3	2	0	0	0	1	0	3	0	3	6	0	3	26
23	2106037	5	2	2.5	5	1	0	6	7	6.5	2.5	3	2	4	4	50.5
24	2106039	0	0	3	0	5	2	5	ó	4	2.3	2	0	0	2	25
25	2106040	5	0	2	0	5	3	6	0	3	0	4	0	0	1	29
26	2106041	7	0	2	0	2	0	2	0	6	0	2	2	2	1	26
27	2106042	8	4	4	0	6	0	7	0	6.5	0	4	3	6	3	51.5
28	2106044	7	5	6	2	1	1	6	6	2	3	2	2	4	0	47
29	2106045	8	3	3	0.5	6	7	6.5	0.5	6.5	7	3	3	6	4	64
30	2106047	4	0	3	0	0	0	0	0	0	0	0	2	0	1	10
31	2106048	6	4	1	0	4	7	7	2	6.5	8	4	3	8	4	64.5

32 2106049 0 0 3 5 4 4 4 0 4 33 2106051 5 4 6 2 7 7 7 0 6.5 34 2106052 7 6 7 0 7 0 5 6 6 35 2106055 8 6 7 0 8 7 7 4 7.5 36 2106056 0 0 0 0 0 0 0 0 2 37 2106057 8 0 5 0 3 2 8 0 4 38 2106058 3 4 2 0 1 6 6 0 6 39 2106059 7 0 7 0 0 5 8 7 7.5 40 2106060 5 0 4 4 0 <	2 0 6 0 5 3 8 4 0 1 2 4	0 1 0 7	7 5	3	62.5 60
34 2106052 7 6 7 0 7 0 5 6 6 35 2106055 8 6 7 0 8 7 7 4 7.5 36 2106056 0 0 0 0 0 0 0 0 0 2 37 2106057 8 0 5 0 3 2 8 0 4 38 2106058 3 4 2 0 1 6 6 0 6 39 2106059 7 0 7 0 0 0 4 0 6 40 2106060 5 0 4 4 0 0 4 0 6	5 3 8 4 0 1 2 4	7	5	3	60
34 2106052 7 6 7 0 7 0 5 6 6 35 2106055 8 6 7 0 8 7 7 4 7.5 36 2106056 0 0 0 0 0 0 0 0 0 2 37 2106057 8 0 5 0 3 2 8 0 4 38 2106058 3 4 2 0 1 6 6 0 6 39 2106059 7 0 7 0 0 0 4 0 6 40 2106060 5 0 4 4 0 0 4 0 6	5 3 8 4 0 1 2 4	7	5	3	60
35 2106055 8 6 7 0 8 7 7 4 7.5 36 2106056 0 0 0 0 0 0 0 0 2 37 2106057 8 0 5 0 3 2 8 0 4 38 2106058 3 4 2 0 1 6 6 0 6 39 2106059 7 0 7 0 0 0.5 8 7 7.5 40 2106060 5 0 4 4 0 0 4 0 6	8 4 0 1 2 4	7	_	_	
36 2106056 0 0 0 0 0 0 0 0 2 37 2106057 8 0 5 0 3 2 8 0 4 38 2106058 3 4 2 0 1 6 6 0 6 39 2106059 7 0 7 0 0 0.5 8 7 7.5 40 2106060 5 0 4 4 0 0 4 0 6	0 1 2 4	_			
37 2106057 8 0 5 0 3 2 8 0 4 38 2106058 3 4 2 0 1 6 6 0 6 39 2106059 7 0 7 0 0 0.5 8 7 7.5 40 2106060 5 0 4 4 0 0 4 0 6	2 4	I 0	_		84.5
38 2106058 3 4 2 0 1 6 6 0 6 39 2106059 7 0 7 0 0 0.5 8 7 7.5 40 2106060 5 0 4 4 0 0 4 0 6		. 0	0	1	4
39 2106059 7 0 7 0 0.5 8 7 7.5 40 2106060 5 0 4 4 0 0 4 0 6	0 0	3	0	4	43
39 2106059 7 0 7 0 0.5 8 7 7.5 40 2106060 5 0 4 4 0 0 4 0 6			_		29
40 2106060 5 0 4 4 0 0 4 0 6	2 4	_			
			-		
41 2106065 2 3 7 0 5 0 6 2 45	0 3			1	30
1 2 2 2 2 2 2 2	2 3.5	5	0	0	40
42 2106068 7 7 5 0 6 6 6 0 6	1 2	2	0	2	50
43 2106072 7 4 1 0 0.5 4 7 2 3	0 2	_	_	-	41.5
			_	_	
44 2106074 0 6 4 0 7 6 6 0 4	3 2	_			41
45 2106077 5 5 6 0 3 4 6 2 6	2 4	4	0	4	51
46 2106079 8 4 3 0 2 4 6 1 5	1 0	2	0	4	40
47 2106081 8 4 5 0 6 3 6 0 4	0 4	_	_		48
		_	_	_	
48 2106083 5 0 5 0 0 0 4 0 4	2 3	-	_		24
49 2106087 4 3 5 1 1 7 2 5	2 4	2	2	2	41
50 2106089 5 0 5 0 6 6 5 5 4	2 3	3	0	1	45
51 2106090 6 7 7 0 4 7 8 4 7	2 4		_	_	
			0	-	65
52 2106093 7 0 4 0 0 0 5 4 7	5 2	_			40
53 2106071 7 2 4 2 4 4 7 4 6	8 4	3	7	2	64
54 2106084 2 4 5 0 0 5 5 5 6	6 3	7	5	2	55
55 2106086 5 3 7 3 8 0.5 7 5 5.5	4 4			_	59
	_			_	
56 2106092 6 0 5 0 3 4 4 2 5	3 3	_	_		42
57 2106094 8 0 4 0 7 3 5 2 1	5 0	2	6	1	44
58 2106096 6 5 4 4 7 5 5 4 6	5 2	6	5	2	66
59 2106097 4 4 6 4 3 4 4 2 7.5	2 3		_	_	45.5
60 2106099 4 0 2 0 7 1 3 0 5	0 2	-	0	_	
	\rightarrow	-	_		30
61 2106100 4 0 7 0 8 4 7 0 4	0 4	5	0	4	47
62 2106101 6 2 0 0 7 5 4 6	6 0		8	3	47
63 2106102 7 0.5 6.5 0 0 4 7 4 5	6 4	4	8	4	60
64 2106103 6 5 3 0 0 5 4 4 5	2 2		7	3	52
			_	_	
65 2106104 7 0 6 0 4 4 4 0 4	8 0	\rightarrow	6		50
66 2106105 6 0 5 0 0 1 3 1 5	5 3	7	3	3	42
67 2106107 8 5 8 7 8 7 8 5 6.5	6 4	0	5	4	81.5
68 2106108 6 0 6 5 0 6 3 0 4	0 3		7	0	40
			_	_	
69 2106109 8 0.5 4 7 0 6 3 0 6	0 4	_	7	_	51.5
70 2106110 5 0 4 5 6 0 5 0 5	0 3	5	0	2	40
71 2106112 4 6 7 4 8 2 6 2 2	0 3	0	0	1	45
72 2106113 5 0 0 0 0 5 0 5	0 3		0	_	24
		$\overline{}$			
	2 1	-	4	4	51
74 2106118 6 6 6 0 6 6 4 5 6	2 2	3	5	1	58
75 2106119 0 2 8 0 2 4 7 4 4.5	0 4	4	0	4	43.5
76 2106120 6 6 2 0 6 6 0 0 5	2 2	4	1	_	
		_	_	1	41
			-	NA	20
78 2106123 5 0 5 0 3 0 4 0 0	0 0	3	0	2	22
79 2106124 4 2 7 0 2 0 6 0 5	2 1	2	5	4	40
	0 2	_	0	_	4
	3 2		5		
				2	40
	0 0		0	2	16
	0 4	4	4	4	63
84 2108007 4 0 4 0 0 5 3 0 2	2 3	3	3	1	30
	_		_	NA	13
			-		
	0 2	4	6	3	55
	2 4	3	5	2	51.5
88 2256004 6 0 3 0 0 0 0 5	0 2	4	2	1	23
	0 4	4	0	4	52
			_		
	0 0	1	0	0	26
	5 4	4	8	4	80
92 2256008 6 2 2 0 0 0 4 0 4	2 3	1	0	3	27
	0 4	4	5	2	56
		_	$\overline{}$	_	
	1 3	1	0	1	30
	8 2	5	5	4	62.5
96 2256012 6 0 5 0 0 0 3 0 6	2 3	3	0	3	31
	2 4	2	4	4	56
	_	_	$\overline{}$	_	
	0 3	0	6	4	33
99 2256015 4 0 3 0 6 0 6 0 5	0 0	0	0	2	26
4					

100	2256016	6	5	6	2	3	5	6	0	6	6	3	4	7	2	61
101	2256017	8	0	7	C	4	5	6	2	6.5	2	2	0	6	2	50.5
102	2256018	0	0	5	C	0	6	0	0	0	0	0	0	0	0	11
103	2256019	8	0	7	2	. 8	7	8	4	6.5	6	4	4	6	4	74.5
104	2256020	7	0	7	C	7	7	7	7	6	6	3	4	8	4	73
105	2256021	8	0	8	C	0	5	6	2	6	2	4	3	7	4	55
106	2256022	5	0	7	C	7	7	7	5	6	0	2	5	6	3	60
107	2256023	7	3	7	2	. 0	5	6	4	1.5	1	1	2	4	4	47.5
108	2256024	4	5	6	0	5	6	6	2	6	0	3	0	6	2	51
109	2256025	7	0	7	0	NA	NA	NA	NA	NA	NA	NA	0	0	4	18
110	2256026	6	0	3	C	1	0	4	0	0	3	0	2	0	1	20
111	2256027	5	3	7	3	1	5	6	5	6.5	2	0	3	4	4	54.5
112	2256028	5	0	5	0	6	7	4	0	5	2	1	0	3	2	40
113	2256029	8	0.5	1	0	1	5	6	2	6.5	8	0	0	6	4	48
114	2256030	5	0	5	0	6	0	5	2	7	0	2	6	2	0	40
115	2256031	6	2	6	4	7	4	6	3	6.5	2	4	3	2	4	59.5
116	2256032	6	0	0	0	1	7	4	4	6	5	3	2	7	2	47
117	2256033	6	0	8	0	8	6	7	0	6.5	6	4	4	7	4	66.5
118	2256034	7	2	7	3	6	5	5	2	6	3	4	3	4	2	59
119	2256035	6	0	2	0	0	0	6	0	5	0	0	4	0	2	25
120	2256036	5	0	4	0	5	0	4	0	5	2	3	4	5	3	40
121	2256037	4	0	7	0	8	6	8	2	6	2	4	4	8	2	61
122	2256038	6	0	3	0	6	6	4	0	6	2	3	6	0	2	44
123	2256039	NA	NA	5	0	8	6	7	0	5	0	2	3	0	4	40
124	2256040	6	0	1	0	6	7	6	0	5	1	2	0	7	2	43
125	2256041	7	0.5	7	0	8	6	8	6	6.5	8	3	0	8	4	72
126	2006003	6	0	4	0	0	0	2	7	7	0	3	2	7	2	40
127	2006012	5	0	7	0	7	4	7	0	6.5	0	0	8	8	4	56.5
128	2006021	5	0	0	0	6	5	4	0	5	0	0	5	0	0	30
129	2006027	6	0	7	0	8	6	6	0	6.5	2	4	8	0	4	57.5
130	2006028	3	0	4	0	3	0	7	6	7	3	3	3	0	1	40
131	2006038	6	0	NA	NA	NA	NA	4	0	6	1	3	6	0	3	29
132	2006070	4	0	5	2	6	6	4	0	6	0	2	5	4	4	48
133	2006075	7	6	8	2	_	5	6	0	6.5	2	4	8	0	4	65.5
134	2006083	6	0	5	0		5	4	0	6	0	3	5	0	2	40
135	2006105	7	7	8	0	_	7	7	0	_	0	4	8	ol	4	60
	2000103					T	<u> </u>				-	7	-	-	-	- 00

Question	Q1(a)	Q1(b)	Q2(a)	Q2(b)	Q3(a)	Q3(b)	Q4(a)	Q4(b)	Q5(a)	Q5(b)	Q5(c)	Q6(a)	Q6(b)	Q6(c)
co	COI	COI	COI	CO2	CO3			CO5	CO4	CO4	CO4	CO6	CO6	CO6
Marks	8	7	8	7	8	7	8	7	8	8	4	8	8	4
Threshold %							50							
Threshold Marks	4	3.5	4	3.5	4	3.5	4	3.5	4	4	2	4	4	2
No. of Students Above Threshold Marks	111	35	88	22	70	74	111	34	109	28	103	57	61	104
Total No. of Students in Class							135							
Percentage Attainment	82 22	25.93	65.19	16.30	51.85	54.81	82 22	25.19	80.74	20.74	76.30	42.22	45,19	77.04
CO Wise Average Percentage Attainment	57.7	8	16	30	53	.33	59	26		53.70			54.81	
Attainment Level**	2			1	:	2	-	2		2			2	

со	CO wise Attainment Level**
CO1	2
CO2	1
CO3	2
CO4	2
CO5	2

*Calulate CO wise Percentage Attainment Level Manually

**Enter the level of Attainment as per Below Range

0%-33 % = 1

34%-66% = 2

67%-100%=3

10/26/23, 2:23 PM	JSE-I	Moodle Quiz XHTML Export	(QU12-	ETH	22-28
forms the basis	s for development o	f mercury tube thermom	eter	-	
First law of thermodynamics Second law of thermodynamics Zeroth law of thermodynamics None of the mentioned	elopment of mercury tub	e thermometer			
	s for development or	f mercury tube thermom	eter		
First law of thermodynamics Second law of thermodynamics Zeroth law of thermodynamics None of the mentioned	organism of moreary cas	o aramoneco.			Ÿ.
A cyclic heat engine operates bet	ween a source temp	perature of 927 degree C			
A cyclic heat engine operates between a smaximum efficiency of the heat engine?	source temperature of 92	7 degree C and a sink tempera	ature of 27 degree	e C. What wil	I be the
01 0,8 0.75 0.7					
A machine which can supply mec	hanical work continu	uously without consumpt	ion		
A machine which can supply mechanical v	work continuously withou	t consumption of any energy is	called as		
Perpetual Motion Machine of the F Perpetual Motion Machine of the S Perpetual Motion Machine of the T none of the mentioned	Second kind (PMM2)				
A machine which can supply mec	hanical work continu	uously without consumpt	ion		
A machine which can supply mechanical v	vork continuously withou	t consumption of any energy is	called as		
O Perpetual Motion Machine of the FO Perpetual Motion Machine of the SO Perpetual Motion Machine of the TO none of the mentioned	Second kind (PMM2)				
A process that passes through nu	ımber of equilibrium	states is called as			
A process that passes through number of	equilibrium states is call	ed as			
Reversible process Irreversible process None of the mentioned Isentropic process	* '				
A process that passes through nu	mber of equilibrium	states is called as			
A process that passes through number of	equilibrium states is call	ed as			
Reversible processIrreversible processNone of the mentionedIsentropic process					
A quasi-static process has main c	haracteristics as it i	S			
A quasi-static process has main character	istics as it is				
a stationary processan infinitely slow processa random process					

O a spontaneous process	Module Quiz ATTIME Export
A quasi-static process has main character	ristics as it is
A quasi-static process has main characteristics as it	is
a stationary processan infinitely slow processa random processa spontaneous process	
A refrigerator and heat pump operates be	etween same temperature limits. If the
A refrigerator and heat pump operates between san	ne temperature limits. If the COP of the refrigertor is 4, what is the COP of heat pump?
3 5 4 3.4	
A system in which no mass can enter or le	eave the system and no energy can
A system in which no mass can enter or leave the sy	ystem and no energy can enter or leave the system is called as
Open system Closed system Isolated system None of the mentioned	
A system in which no mass can enter or leave the sy Open system Closed system Isolated system None of the mentioned	ystem and no energy can enter or leave the system is called as
According to first law of thermodynamics	
According to first law of thermodynamics	
work done by a system is equal to heat trans total internal energy of a system during a pro internal energy, enthalpy and entropy during total energy of a system remains constant	ocess remains constant
According to first law of thermodynamics	
According to first law of thermodynamics	
 work done by a system is equal to heat trans total internal energy of a system during a pro- internal energy, enthalpy and entropy during total energy of a system remains constant 	ocess remains constant
An air-conditioner provides 1 kg/s of air at	15 degree C cooled from outside
	e C cooled from outside atmospheric air at 35 degree C. Estimate the amount of power
01.09 kW 01.19 kW 01.29 kW 01.39 kW	

Closed system is also called as

Closed system is also called as

O Control volume

ETH - 1SE-2 22-23

Q1. Study the refrigeration system and perform the first law and second law analysis on the system by using following data.

Group 1 - use R12 as refrigerant

Group 2 - R22

Group 3 - R134a

Sr. No.	Description	Symbol	Unit	Quantity
1	Condensing pressure	Pc	PSI	150
	Evaporating			
2	Pressure	Pe	PSI	45
3	Rotameter flow rate	m	LPH	20
V	Condenser Inlet			
4	Temp	T1	^{0}C	52
	Condenser Outlet			
5	Temp	T2	°C	30
	Evaporator Inlet			
6	Temp	T3	°C	2
	Evaporator outlet			
7	Temp	T4	°C	13

Q2. Study the steam power plant and perform the first law and second law analysis on the system by using following data.

Group 4

	Observation Table for Steam Power			
	Plant			
Sr. No.	Description	Symbol	Unit	Quantity
	Boiler Section			
1	fuel consumption	mf	kg/hr	36
2	Calorific Value	LHV	KJ/kg	45000
3	Water Inlet Temperature	T1	⁰ C	27
4	Steam Temperature	T2	⁰ C	192
5	Steam Pressure	Psteam	bar	11.5
	Turbine Section			
1	Exhaust Pressure	Pexhast	bar	0.23
2	Exhaust Temperature	T3	⁰ C	98
	Generator Section	1		
1	Current	I	A	4.36
2	Voltage	V	V	230
	Condenser Section	1		

1	Cooling water inlet temperature	T4	°C	30
2	Cooling water outlet temperature	T5	°C	36

Q3. By using the following data perform the first law and second law analysis

Group 5

Dia of the metal rod = 25 mm

Distance between the adjacent thermocouple = 50

mm

mass flow rate of water = 0.023 kg/s

Thermal conductivity k = 385 W/mK

Ten	nperature		rent poin			ermoc	ouple		ature for the	
T1		T2		T3	T4	il.	T5	T6	T7	
	52		49	4	5	42	39	27	2:	9

Group 6

Dia of the metal rod = 30 mm

Distance between the adjacent thermocouple = 60

mm

mass flow rate of water = 0.023 kg/s

Thermal conductivity k = 385 W/mK

Tem	perature		rent poin	t along the	e thermo	couple		ature for the doublet water
T1		T2		T3	T4	T5	T6	T7
	52		49	45	42	2 39	27	29

Q4. Study the IC Engine and perform the first law and second law analysis on the system by using following data.

Group 7 - Load 1

Group 8 - Load 2

Group 9 – Load 3

Group 10 - Load 4

Sr. No.	Description				
			Qu	antity	
1	Net Torque in kN- m	Load 1	Load 2		Load
2	Speed in RPM	0.0104	0.0207		
3	Temp of Inlet trough jacket	1590	1585	1540	1000270
4	Temp of outlet tough Jacket	25	25	25	101
5	Temp ofoutlet trough jacket	36	39	40	2
6	Fuel Consumption (kg/s)	0.000249	0.000327		3
	Water flow rate in jacket(kg/s)	0.149254	0.140845	0.000425	0.00020
7	Tempearture of inlet water to calorimeter	0.115254	0.140845	0.126582	0.1587
8	Tempearture of outlet water to calorimeter	25	25	25	25
9		39	43	47	20
10	Temperature for the exhaust gas inlet Temperature for exhaust gas outlet	145	180	220	30
11	Water flow rate in calorimeter	85	100	115	110
	now rate in calorimeter	0.055866	0.051282		$\frac{60}{0.081301}$

Q 5

Study the steam power plant and perform the first law and second law analysis on the system by using following data.

Group 11

	Observation Table for Steam Power Plant		Γ	
Sr. No.	Description	Cross la 1	77.1	
1	Boiler Section	Symbol	Unit	Quantity
1	fuel consumption	mf	kg/hr	40

2	Calorific Value	1	r	
3		LHV	KJ/kg	45500
4	Steam Tomasside	T1	°C	27
5	- steam remperature	T2	⁰ C	220
	_ steam ressure	Psteam	bar	12
1	Turbine Secti	on		12
2	Exhaust Pressure	Pexhast	bar	0.5
	Exhaust Temperature	T3	⁰ C	0.5
1	Generator Sect			98
1	Current	T		
2	Voltage	1	A	4.36
	Condenser Secti	V	V	230
1	Cooling water inlet temperature			
2	Cooling water met temperature	T4	°C	30
4	Cooling water outlet temperature	T5	°C	36
				30

KE Society's

Rajarambapu Institute of Technology, Rajaramnagar Department of Mechanical Engineering

Result Analysis: Attainment of COs

	Examination: I	SE/2022-23	Cla	ss: S Y B Te	ch.		Semester	iii **
	Program: Me Enginee			Eng	neernig Th	ermodynan	nics	
1	Exam		SE1	T Second	SE2		SE3	ing)
ı	СО	CO1	CO2	CO3	CO4	CO5	CO6	Total (20)
	Marks	5	4	5	4	1	1	-
	PRN Number						1 - 2	
1	2006052	2	1	1	1	1	1	7
2	2006096	2	1	1	1	1	1	7
3	2106001	4	3	4	3	1	1	16
4	2106002	4	2	4	3	1	1	15
5	2106003	3	2	3	2	1	1	12
6	2106005	3	3	3	2	1	1	13
7	2106008	3	2	3	2	1	1	12
8	2106009	3	2	3	2	1	1	12
9	2106010	3	3	3	3	1	1	14
10	2106011	4	3	3	3	1	1	15
11	2106013	4	4	4	3	1	1	17
12	2106014	3	3	3	3	1	1	14
13	2106018	3	2	3	2	1	1	12
14	2106019	3	2	2	2	1	1	11
15	2106021	3	2	3	2	1	1	12
16	2106022	2	2	3	2	1	1	11
17	2106023	4	3	4	3	1	1	16
18	2106025	3	3	3	3	1	1	14
19	2106026	3	3	3	3	1	1	14
20	2106027	3	3	3	3	1	1	14
21	2106029	3	3	3	3	1	1	14
22	2106030	4	4	4	3	1	1	17
23	2106032	3	3	3	3	1	1	14
24	2106034	3	2	2	2	1	1	11
25	2106035	3	3	3	2	1	1	13
26	2106037	4	3	4	3	1	1	16
27	2106039	3	3	3	2	1	1	13
28	2106040	3	2	3	2	1	1	12
29	2106041	4	3	3	3	1	1	15
30	2106042	3	3	3	3	1	1	14
31	2106044	3	3	3	3	1	1	14
32	2106045	3	3	3	2	1	1	13
33	2106047	4	4	4	3	1	1	17
34	2106048	3	3	3	2	1	1	13
35	2106049	3	2	3	2	1	1	12
36	2106051	3	3	3	3	1	1	14
37	2106052	3	3	3	3	1	1	14
38	2106055	3	3	3	3	1	1	14
39	2106056	4	3	4	3	1	1	16
40	2106057	3	2	3	2	1	1	12

41	2106058	3	3	3	3	1	1	14
42	2106059	4	3	4	3	1	1	16
43	2106060	4	3	3	3	1	1	15
44	2106065	3	2	3	2	1	1	12
45	2106068	4	3	3	3	1	1	15
46	2106071	3	3	3	2	1	1	
17	2106084	4	2	4	2	1	1	13
8	2106086	3	2	3	3	1	1	14
19	2106092	3	3	3	2	1	1	13
:o	2106094	4	3	4	2	1	1	13
_							1	15

Г1	2100000	1 5			Т			
51		3	2	3	3	1	1	13
52		3	3	3	2	1	1	13
53		3	3	3	2	1	1	13
54	2106100	2	2	2	2	1	1	10
55	2106101	3	3	3	3	1	1	14
56	2106102	3	3	3	2	1	1	13
57	2106103	3	3	4	3	1	1	15
58	2106104	3	2	3	2	1	1	12
59	2106105	3	3	3	3	1	1	14
60	2106107	3	2	3	2	1	1	12
61	2106108	3	2	3	3	1	1	13
62	2106109	3	3	3	3	1	1	14
63	2106110	3	2	3	2	1	1	12
64	2106112	4	3	4	3	1	1	16
65	2106113	3	2	3	2	1	1	12
66	2106116	4	3	3	3	1	1	15
67	2106118	2	2	3	2	1	1	11
68	2106119	3	2	3	2	1	1	12
69	2106120	3	2	2	2	1	1	11
70	2106122	4	3	3	3	1	1	15
71	2106123	3	2	2	2	1	1	11
72	2106124	3	2	3	2	1	1	
73	2106125	2	3	2	2	1	1	12
74	2106127	4	3	3	3	1		11
75	2106128	3	2	3			1	15
76	2106129	3	2		2	1	1	12
77	2108007	3		3	2	1	1	12
78	2256001		2	3	2	1	1	12
79	2256001	3	3	4	3	1	1	16
80	2256002		2	3	3	1	1	13
81	NAME OF TAXABLE PARTY OF TAXABLE PARTY.	3	2	3	3	1	1	13
	2256004					1	1	2
82	2256005	3	2	3	3	11	1	13
83	2256006	3	3	3	3	1	1	14
84	2256007	3	2	3	2	11	1	12
85	2256008	2	2	3	2	1	1	11
86	2256009	3	2	2	2	1	11	11
87	2256010	3	3	3	3	1	1	14
88	2256011	4	3	3	3	1	1	15
89	2256012	2	2	3	3	1	1	12
90	2256013	3	2	3	3	1	1	13
91	2256014	3	2	3	3	1	1	13
92	2256015	3	2	2	2	1	1	11
93	2256016	3	2	3	3	1	1	13
94	2256017	4	3	3	3	1	1	15
95	2256018	3	3	3	3	1	1	14
96	2256019	3	2	3	3	1	1	13
97	2256020	4	3	4	3	1	1	16
98	2256021	3	2	3	3	1	1	13
99	2256022	3	2	3	3	1	1	13
100	2256023	2	2	2	2	1	1	10
101	2256024	3	2	2	2	1	1	11
102	2256025	2	2	2	2	1	1	10
103	2256026	3	2	3	2	1	1	12
104	2256027	3	3	3	3	1	1	14
105	2256028	2	2	3	2	1	1	11
106	2256029	3	2	3	2	1	1	12
107	2256030	3	3	3	3	1	1	14
108	2256031	3	2	3	2	1	1	12
_								12

109	2256032	3	2	3	2	1	1	10
110	2256033	3	3	3	3	1	1	12
111	2256034	4	3			1	11	14
112	2256035	3	3	4	3	1	1	16
113	2256036			3	2	1	1	12
_		3	2	3	3	1	1	13
114	2256037	3	2	3	3	1	1	13
115	2256038	3	2	3	2	1	1	12
116	2256039	3	2	3	2	1	1	12
117	2256040	3	2	3	2	1	1	12
118	2256041	3	2	3	3	1	1	13
Г								

Exam	18	SE1	IS	SE2	IS	E3	1
CO	CO1	CO2	CO3	CO4	CO5	CO6	
Marks	5	4	5	4	1	1	İ
Threshold %			50	II.		11 - 1	I
Threshold Marks	2.5	2	2.5	2	0.5	0.5	0
No. of Students Above Threshold Marks	106	115	104	115	117	117	
Total No. of Students in Class			128				
Percentage Attainment	82.81	89.84	81.25	89,84	91.41	91.41	
CO Wise Average Percentage Attainment	82.81	89.84	81.25	89.84	91.41	91.41	
Attainment Level**	3	3	3	3	3	3	

СО	Average Attainment Level**
CO1	3
CO2	3
. CO3	3
CO4	3
CO5	3
CO6	3

*Calulate CO wise Percentage Attainment Level Manually

**Enter the level of Attainment as per Below Range

0%-33 % = 1

34%-66% =2

67%-100%=3

Rajarambapu Institute of Technology, Rajaramnagar

(An Autonomous Institute, Affiliated to SUK)

Unit Test-I

S. Y. B. Tech. Mechanical Engineering Semester- III Course Name: Engineering Thermodynamics Course Code: ME2134

Day &Date:.....

Max. Marks- 25

Instructions: 1) Figures to the right indicate full marks.

- 2) Assume suitable data if necessary and mention it clearly.
- 3) Use of steam table is allowed.

Q.1 Solve the following

Enroll No

Marks

05

- (a) Derive general steady flow energy equation as per the first law of thermodynamics.
- (b) Prove that energy is a property of the systems with examples

CO1 05

(c) Explain Kelvin Planks statements of the second law of thermodynamics.

CO2 05

OR

(c) Explain Clausius statements of the second law of thermodynamics?

CO2 05

05

CO₁

(d) A sluice gate dams water up 5 m. There is a small hole at the bottom of the gate so liquid water at 20oC comes out of a 1 cm diameter hole. Neglect any changes in internal energy and find the exit velocity and mass flow rate.

OR

(d) Air at 20 m/s with 5 kg/s flows into a jet engine and it flows out at 500 m/s. CO1What is the change (power) in flow of kinetic energy?

(e) Develop equation for COP of Refrigerator and Heat Pump with layouts. CO1 05

Enroll No

Rajarambapu Institute of Technology, Rajaramnagar (An Autonomous Institute, Affiliated to SUK)

Unit Test-I

S. Y. B. Tech. Mechanical Engineering Semester- III Course Name: Engineering Thermodynamics Course Code: ME2032

Day &	Date:			
			Max. Marks- 25	
	Instr	uctions: 1) Figures to the right indicate full marks. 2) Assume suitable data if necessary and mention it clearly.		
		3) Use of steam table is allowed.		
Q.1	Solv	ve Any Five of the following		Marks
	(a)	Apply SFEE to turbine and heat exchanger and develop equation for the same.	CO1	05
	(b)	Illustrate with figure equation for COP of heat pump and refrigerator	CO2	05
	(c)	Explain the difference between extensive and intensive properties of the systems with examples	CO1	05
	(d)	Develop the equation for efficiency of the heat engine	CO2	05
	(e)	Write the limitation of the first law of the Thermodynamics	CO2	05
	(f)	In a common room, for comfort, temperature conditions are maintained in winter by circulating hot water through a piping system. The water through the system at 3 bar pressure and 50°C temperature with a enthalpy of 240 kJ/kg and leaves at 2.5 bar, and 30°C with an enthalpy of 195 kJ/kg. The exit of water is 15 m above its entry. The water supplies 30 MJ/h heat to the room. Calculate the quantity of water water is 15 m above.	er an py er	05
		circulated through the pipe per minute. Assume there is no pump wo	rk	

in the system and change in kinetic energy is negligible.

Rajarambapu Institute of Technology, Rajaramnagar (An Autonomous Institute, Affiliated to SUK)

Enroll No

Unit Test-II

S. Y. B. Tech. Mechanical Engineering Semester- III
Course Name: Engineering Thermodynamics
Course Code: ME2033

Q.1	 ode	
8		

****		Course Code: ME2033	_	
		2	Max. Ma	rks- 25
	Inst	ructions: 1) Figures to the right indicate full marks. 2) Assume suitable data if necessary and mention it clearly. 3) Use of steam table is allowed.		
Q.1	Solv	ve the following.		Marks
	(a)	What did you understand by mole fraction, mass fraction, Avogadro's principle and Dalton's law of partial pressure?	s CO4	05
	(b)	Describe Carnot cycle and obtain expression for its efficiency as applied to a heat engine. -OR-	CO2	05
		Show that entropy is a property of the system.		
	(c)	An inventor claims to have develop a heat engine that receives 750 k of heat from a source at 550 K and produces 460 kJ of net work whill rejecting the waste heat to a sink at 290 K. Is this a reasonable claim Why?	e	05
		-OR-		
		A heat source at 800 K loses 2000 kJ of heat to a sink at (a) 500 K and (b) 750 K. Determine which heat transfer process is more irreversible.	d	
	(d)	A 500 kg iron block is initially at 200°C and is allowed to cool to 27°C by transferring heat to the surrounding air at 27°C. Determine the reversible work and the irreversibility for this process.		05
	(g)	Derive an equation for the exercy of the heat input of cycle	CO3	05

Rajarambapu Institute of Technology, Rajaramnagar

(An Autonomous Institute, Affiliated to SUK)
UT 2 Open Book Examination

Second Year B. Tech. Mechanical Engineering Semester- III

Course Name: Engineering Thermodynamics Course Code: ME2032

Q.P.Code

Day &Date: Tuesday, 27th Oct, 2020 Time: 3.00 pm to 5.30 pm (2.5 hrs)

Enroll No

Max Marks-25

Instructions: 1) Figures to the right indicate full marks.

- 2) Assume suitable data if necessary and mention it clearly.
- 3) Use of steam table is allowed.

Q.1 Solve the following

Marks

06

07

06

06

- (a) A rigid tank and a frictionless piston cylinder device initially contains 12 kg of an ideal gas each at the same temperature, pressure and volume. It is desired to raise the temperatures of both systems by 15°C. Determine the amount of extra heat that must be supplied to the gas in the cylinder, which is maintained at constant pressure to achieve this result. Assume the molar mass of the gas is 25.
- (b) Design a heating system for a swimming pool that is 2 m deep, 25m long, and 25m wide. Your client desires that the heating system be large enough to raise the water temperature by 5 + last one digit of your roll number (e.g. if your roll number is 1806033 then increase in temperature is 5+3=8°C) in 3 hr. The rate of heat loss from the water to the air at the outdoor design conditions is determined to be 960 W/m², and the heater must also be able to maintain the heated temperature of water at those conditions. Heat losses to the ground are expected to be small and can be disregarded. The heater considered is a natural gas furnace whose efficiency is 80 percent. What heater size (in kW input) would you recommend to your client?
- (c) A mixture of gases consists of 0.1 kg of Oxygen, 1 kg of Carbon dioxide, 0.5 kg of helium. The mixture is expanded from 1000 kPa and 327°C to 100 kPa in an adiabatic steady flow turbine of 90 percent isentropic efficiency. Calculate second law efficiency and exergy destruction during the expansion process. Take T₀ = 25°C.
- (d) A well-insulated heat exchanger is to heat water ($c_p = 4.18 \text{ kJ/kg.}^0\text{C}$) from 25°C to 60°C at a rate of 0.4 kg/s. The heating is to be accomplished by geothermal water ($c_p = 4.31 \text{ kJ/kg.}^0\text{C}$) available at 140°C at a mass flow rate of 0.3 kg/s. The inner tube is thin-walled and has a diameter of 0.6 cm. Determine a) the rate of heat transfer and b) the rate of exergy destruction in the heat exchanger.

Rajarambapu Institute of Technology, Rajaramnagar (An Autonomous Institute, Affiliated to SUK)

Enroll No

Unit Test-II

S. Y. B. Tech. Mechanical Engineering Semester- III
Course Name: Engineering Thermodynamics
Course Code: ME2032

Q.P.Code

Day &Date:			Max. Mar	x. Marks- 25	
	Instru	nctions: 1) Figures to the right indicate full marks. 2) Assume suitable data if necessary and mention it clearly. 3) Use of steam table is allowed.			
Q.1	Solv	re Any Five of the following		Marks	
	(a)	Explain principle of increase in entropy.	CO2	05	
	(b)	Illustrate with figure equation for availability of open (steady flow) system	CO3	05	
	(c)	Explain the following 1. Mole fraction 2. Mass Fraction	CO5	05	
	(d)	3. Dalton's law 4. Amagat's law 5. Universal gas constant Calculate the decrease in exergy when 25 kg of water at 95°C mix was 35 kg of water at 35°C, the pressure being taken as constant and to temperature of the corresponding being 15°C. Cp of water is 4.2 kJ/kg	ith CO3	05	
	(e)	One kg of ice at 0°C is mixed with 10 kg of water at 30°C. Determine the unavailable energy and the net increase in the entropy when to system reaches common temperature. Assume that surrounding temperature is 10°C. Take specific heat of water as 4.18 kJ/kg.K as specific heat of ice as 2.1 kJ/kg.K, latent heat of fusion as 333.5 kJ/kg.K.	the ng nd	05	
	(f)	Consider a gas mixture that consists of 4 kg of O ₂ , 5.5 kg of N ₂ and 10 kg of CH ₄ . Determine (a) the mass fraction of each component, (b) mole fraction of each component, and (c) the average molar mass a gas constant of the mixture.	the	05	

U-

146043

R.G. Kadam Signature of Student

K. E. Society's

RAJARAMBAPU INSTITUTE OF TECHNOLO RAJARAMNAGAR

CLASS & BRANCH .: (S.Y. Mechanica)						UNIT	TEST NO.: 01
PERMANENT REGISTRATION NO. (PRN): 2256007						Q. P.	CODE: UT152
COURSE NAME : ETH					COU	RSE CODE: 19520	
DAY & DATE : 0410112023						NO. (OF SUPPLEMENT
	·						
Que. No.		Marks				Sub Total	
eguo. No.	а	b	С	d	е	f	Sub Iolai

Que.	No			Sub Total				
	140.	а	b	С	d	е	f	Sub rotar
1	F							
2								
3								
4								
5								
6					× ×			
				Т	otal Ma	arks Obt	ained	

Signature of Examiner

IMPORTANT NOTICE

As per Maharashtra Act No. XXXI of 1982 (7&8) whoever is found in or near an examination hall by the invigilator or any other person appointed to supervise the conduct of examination, copying answers to the question paper at the examination, from any book, notes or answer papers of other candidates, or appearing at the examination for any other candidate or using any other unfair means shall, on conviction, be punished with imprisonment for a term which may extend to six months, or with fine which may extend to five thousand rupees or with both. Whoever abets any offence under this act shall be punishable with the punishment provided for the offence.

INSTRUCTIONS

- 1. The answer book supplied to examinees is sufficient for writing answers. The supplement shall be supplied only after the verification by the invigilator.
- 2. It is necessary to write the Question No. and Sub Question No. before answer.
- 3. Write the complete answer in sequential manner and then start the next question in readable handwriting.
- 4. Answer in an illegible and undecipherable handwriting are liable to be marked as zero.
- 5. Use of blue color ink only (except diagrams) is permitted.
- 6. The candidate should not take any books/notes, log table, scribbling pads, cell phones, programmable calculators or any kind of reference material in to the examination hall. The candidate should make sure that he/she has no unauthorized book or paper in the examination hall with him or in his or her desk. he/she should have identity card, and hall ticket. The candidate should not write anything on the hall ticket, identity card, calculator and question paper,
- 7. The candidate should see that the invigilator has appended his/her signature at the specified space on the answer book as and when he/she receives answer book.
- 8. A warning bell shall be given 10 minutes before the commencement of the examination. All the candidates shall take their possession of seats. Another bell shall be given at the beginning of the examination when question paper shall be distributed. No candidate shall be admitted after 30 minutes of the commencement of examination and shall not be allowed to leave the examination hall before 60 minutes after the commencement of examination. No candidate should leave his/her seat during last 10 minutes. Warning bell shall be given 10 minutes before the closing time and final bell is given at the end of the examination. Then all the candidates should stop writing or revising the answer and should hand over the answer book to the invigilator immediately.
- 9. Any candidate appearing for UG/PG examination is liable to be charged for committing malpractice in the following cases:
 - a. Bringing in the examination hall or being found in possession of portions of a book manuse t, programmable calculator any other matter, which is not permissible to be brought into the examination hall.
 - b. Having found any written matter on scribbling pad, question paper, calculator, any part of the body, handkerchief, cloths, socks, instruments box, scales etc.
 - c. Disclosing identity by writing any words or making any peculiar marks on the papers of answer books,
 - d. Copying from the material or matter or answer of another candidate or similar aid or assistance rendered from another candidate within the examination hall.
 - e. Communication with any candidate or any other person inside or outside examination hall with a view to take assistance or aid to write answer in the examination.
 - f. Making any request of representation or offers by threat for inducement or inducing to invigilator or and any another official or officer of the institute or college for favors in the examination hall or the examiner in the answer script.
 - g Smuggling out or smuggling in or tearing of the answer scripts sheets or supplementary sheets or inserting papers within or outside the examination hall into the answer book or running away along with the answer script from the examination hall or premises.
 - H Impersonating or allowing any other person to impersonate to answer in his/her place in the examination hall.
 - I. Supply of copying material inside or from outside the examination hall.
 - j. Bringing mobile phone to the examination hall.
 - k. Unruly behaviour inside or near the examination hall.

STATEMENT CONTRACTOR C		
Q. No.		
Q1)		
		THEOREM TO THE
, A.	a)	
	-4	control mass:
		It is the control mass system on mixed
		mass. The mass is not transfer on the
		boudry. The energy is in or out from
0	The second residence of the se	this boundy
		18 8 4 4 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
	1/ft Water Laws	Control volume:
517	nra.	It is control value system It. The volume
= =	4	is transfer is boundary from in or out.
		and there energy passing to the boundary
1 1		to in or out
	1	
\bigcirc		रिष्ठे तपसा स ^{रहरू}
	CO-recognition	(a) · 2 (a) (b)
		100 - 100 - 100 - 100 - 100 P
	A Company of the Comp	
	State of the last	The second of th
	All Indianaeura in the	(4004-04)
	And the second color	
		ate on the energy in the state of the state

Q. No.	
9)	
\Rightarrow	cannot cycle and obtenin experssion for its
***************************************	efficiency-es applied to a heat engine
	i) cannot cycle is reversible or Ideal cycle.
	ii) Any fluid may be to used to openate
	. comot eycle- which performed the engine
-	cylinder head to suposty to alternative
8	to perperformed perfect conductor or
	perfect insuler of heat.
	iii) Heat causes to the Flow of the cylinder
22	to the application high tempreture source.
).	to the cylinder head during expansion and
	Flow of the cylinder to the application of
\bigcirc	1000 tempreture source to the cylinder head
	during compression.
887	T. Source
	The second secon
	1 112 112 2011 1111 2 2 2011 2 1 1 1 1 1
	11 10 1 2 12 13 4 10 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
	TZ SINK.

Q. No.	
100	P
	Jsothermally
· C	expansion (
	30000 1000 2000 2000 1000000
	adibatic resconsion Compression The substitution of the substitu
.)	6 4
	3 Tsothermousy compression
5111	11/2 11/4 13, 1 1 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
	comot engine cycle
	TO ESTADO POR PORTO DE LA COMO DEL COMO DE LA COMO DEL COMO DE LA COMO DE LA COMO DE LA COMO DE LA COMO DEL COMO DEL LA COMO DEL
	340963. 3401000 By Short Day
7.34	MINISTER TO PERSONAL PROPERTY.
:92	1) process(1 to 2): Heret energy source is
1 11 (14)	applied to Heat Qt is taken to whilst fluid
10	expands. Isothermally and niversibility cut
HANIO	given constant ex high tempreture
	AUTOCONGIAO PATRIBITI -
	2 process (2 to3): The cylinder performed the
	perfect insulator and so not flow from heat
	taken the fluid expands, adibatically and
a.	rivesibility whilst to temporture feuls from
	T1 t0 T2

Q. No.	
	process (& to 4): coted cold energy source is
	applied to Heat Q2 is taken to whilst fluid
	compression. Isothermally and riversibility at
	g.constant 1000 tempreture
	process (4+01): The cylinder performed perfect
	insulator so not flow from heat taken to fluid
	compression, adipaticuly and riversibility exwhilst
D / G	tempreture raise prom 12 tor,
	121/7/ Control 2 2
	The first law of the modynamic is work is
	equal to the different between . Heat source
	of the sin energy source of e heat energy of
	the sink
	PLANTON ONLY WORK THE TOO WENCHOOLD DELLE A
0	9 W-9H-91
	- F 391 (9 6 7 7 7 7 7 9 5
	V. Mork gove
	Hecet energy source
	n= 9H-91
v.	9H SEVERONE SERVICES
	2- TH-TL
	TH
	A South State of the State of t

0	
Q. No.	
	ONE OF BUILDING TO THE STREET
j.	1231 1 Harris 7=1-IL War Capper 18 Harrison
ý	5 petitioner l'en mar Maintes le considerations
	DE L'ESTATE DE L'ESTA (CLE 1991)
C	
9)	Market Commence of the Commenc
-7	Steady flow earnenegy ean
0	According to POZZIE
	UI+PIVI+ NP+971+00= U2+P2V2+V2 +972+9
	2
	becomes the eqn
3-	UI+PIVI+V12 = U2+ P2V2+V22
se t	
	The Isothermal energy and flow energy
	is collective called. The enthology is
	denoted by the h
	- smoke drawy p
	2 b,+v12 a h2+v22
	(D-15D)
	2× 11+1/2 2 2× 12+1/2
÷	2 2

Q. No.	
	$2 \times h_1 + v_1^2 = 2 \times h_2 + v_2^2$
	N-22 = N-2-x2+
	$N_2 = \sqrt{N_1^2 + 2(h_2 - h_1)}$
	Augusting of the second of the
	ahis is nozzle ean
(P	According to tenbine
	U1+PIVI +V12 +971+WCH2+P2V2 +V22+972+9
	1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 -
	becomes ean.
	UI+PIVI = U2+P2U2+9
	1211112222211161
	The tenbine is work output: 740
	i) The inscutedted heret transfer from the
	Fluid to surrounding nigligible. q=0
To Marie To	
	ii) change potenticul energy is nigligible 2 = 12
	iii) Change in kinetic energy is nigligible.
	W= h1-h2
	This the terribine ean

Q. No.	
9)	
= "	cop. of beat pump and repoigerator.
	Hecet pamp:
	i) The heet pump is device to maintenin temp
	of this system. to atmospheric temporature below
	ii) Heat pump is transferred from heat energy
	source from 1000 temp source to high
	temp source with the help of extremel world
	(3// 58)
	Tii) evapourated is located by outside the room
	13 10
	iv) condenses is located by inside the room
1	
\cup	High temp reservious
	H.D K. CH-95
	Low temp. reserviour
	V) COPHP: QH . 12-th . 1-
	QH-QL tH-tz
4	

12 Q. No. 01/19 11 垣

Q. No.	
4	
0	USTITUTE
	180 8 4 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
*	(\$) / X/ George (C.S.)
	3// 3/25
	12/ 10/06/06/09// 19/
,*	
0	रहें तपसा सार्थ

Q. No.	
2-	
0	NSTITUTE
	27/2000/2017(2)
	3/(28)
	[S] [EQ(•)[S]] [6]
0	र्शहे तपसा साध्य
3 2 -	
,	

U-

146044

Sankett
Signature of Student

K. E. Society's

RAJARAMBAPU INSTITUTE OF TECHNOLC RAJARAMNAGAR

(An Autonomous Institute affiliated to Shivaji University, Kolhapu

CLASS & BI	RANCH.:_	SY B-	Tech	Mech	anical	UNI	TTEST NO.:
							CODE: UT 152
COURSE NAME: Engineering Thermodynamics course code: ME 203							
DAY & DATE: Wedersaday 4/1/2023 NO. OF SUPPLEMENT							
						SOCIETA SULL PROTECTION AND ADMINISTRA	
Que. No.	Marks						Sub Total
	a	b	С	d	е	f	Sub Iotal
1							
2							
3	- 6 j						
4							
5							
6	No. of						

Signature of Examine	*
----------------------	---

Total Marks Obtained

IMPORTANT NOTICE

146044

As per Maharashtra Act No. XXXI of 1982 (7&8) whoever is found in or near an examination hall by the invigilator or any other person appointed to supervise the conduct of examination, copying answers to the question paper at the examination, from any book, notes or answer papers of other candidates, or appearing at the examination for any other candidate or using any other unfair means shall, on conviction, be punished with imprisonment for a term which may extend to six months, or with fine which may extend to five thousand rupees or with both. Whoever abets any offence under this act shall be punishable with the punishment provided for the offence.

INSTRUCTIONS

- 1. The answer book supplied to examinees is sufficient for writing answers. The supplement shall be supplied only after the verification by the invigilator.
- 2. It is necessary to write the Question No. and Sub Question No. before answer.
- 3. Write the complete answer in sequential manner and then start the next question in readable handwriting.
- 4. Answer in an illegible and undecipherable handwriting are liable to be marked as zero.
- 5. Use of blue color ink only (except diagrams) is permitted.
- 6. The candidate should not take any books/notes, log table, scribbling pads, cell phones, programmable calculators or any kind of reference material in to the examination hall. The candidate should make sure that he/she has no unauthorized book or paper in the examination hall with him or in his or her desk. he/she should have identity card, and hall ticket. The candidate should not write anything on the hall ticket, identity card, calculator and question paper,
- 7. The candidate should see that the invigilator has appended his/her signature at the specified space on the answer book as and when he/she receives answer book.
- 8. A warning bell shall be given 10 minutes before the commencement of the examination. All the candidates shall take their possession of seats. Another bell shall be given at the beginning of the examination when question paper shall be distributed. No candidate shall be admitted after 30 minutes of the commencement of examination and shall not be allowed to leave the examination hall before 60 minutes after the commencement of examination. No candidate should leave his/her seat during last 10 minutes. Warning bell shall be given 10 minutes before the closing time and final bell is given at the end of the examination. Then all the candidates should stop writing or revising the answer and should hand over the answer book to the invigilator immediately.
- 9. Any candidate appearing for UG/PG examination is liable to be charged for committing malpractice in the following cases:
 - a. Bringing in the examination hall or being found in possession of portions of a book manuscriprogrammable calculator any other matter, which is not permissible to be brought into the examination hall.
 - b. Having found any written matter on scribbling pad, question paper, calculator, any part of the body, handkerchief, cloths, socks, instruments box, scales etc.
 - c. Disclosing identity by writing any words or making any peculiar marks on the papers of answer books,
 - d. Copying from the material or matter or answer of another candidate or similar aid or assistance rendered from another candidate within the examination hall.
 - e. Communication with any candidate or any other person inside or outside examination hall with a view to take assistance or aid to write answer in the examination.
 - f. Making any request of representation or offers by threat for inducement or inducing to invigilator or and any another official or officer of the institute or college for favors in the examination hall or the examiner in the answer script.
 - g Smuggling out or smuggling in or tearing of the answer scripts sheets or supplementary sheets or inserting papers within or outside the examination hall into the answer book or running away along with the answer script from the examination hall or premises.
 - H Impersonating or allowing any other person to impersonate to answer in his/her place in the examination hall.
 - I. Supply of copying material inside or from outside the examination hall.
 - j. Bringing mobile phone to the examination hall.
 - k. Unruly behaviour inside or near the examination hall.

	3
Q. No.	
9.1	
a)i	Control volume -
	Control volume means open system in
	this system mass and energy both are
	transfer.
	eg; Pressure Cooker Cup of tea
	energy 1 mass
	DUSTITUTE
	3/2/2000
ìi)	Control Mass -
	Control mass means closed system in this
	system only energy is transfer & mass is
	does not transfer.
	eg. Pressure cooker
0	eg. Pressure cooker
	THE STATE OF THE S
	Section for the section of the secti
	1
	is the front interior of the paying
	LN uc>

4		
Q. No.		
6)	Path function -	
•	In this function means which are	
	dependent variable is called as path	
	function.	
	Heat and work are dependent on time	
	So, Heat & work is path function.	
	Heat increase then work is also is also	
	increase and at intial point.	
	130 6 4-40 (S)	
	131/34 See 12 (2)	
	3// 3/3/3/3/3/3/3/3/3/3/3/3/3/3/3/3/3/3	
c)	U1 = 800KJ	
	91055 = 500 KJ	
	Wpad = looks	
*	42 = 1.	
	$\Delta E = \Delta E in - \Delta E out$	
	U2-41 = Wpad - 91055	
	42-800 = 100 - 500	
	U2-800= -400	
	Uz = -400 + 800	
	42 = 400 KJ	
• •	The final internal energy of the fluid is	
	400 KJ.	

	5
Q. No.	
d) ij	Heat pump
	Source
	HH 19H
	(HP) ← W= QH-QL
,	HL19L
	Sink
	ASTITUTE CONTINUES
	COP - desire heating effect Work Supply
	= QH
	9H-9L
	Human Company (1997)
	HH - HL
	Or
0	COPHP + 1 = COPR
ii)	Refrigerator
	Source
	$(R) \leftarrow W = 9H - 9L$
	Cink
	Sink

6	
Q. No.	
	cap desire cooling effect
-	COPR = Work supply
	- QL
	9H-9L
	- He son
	HH- MHL PARTE - MARKET
g)i)	Nozzle stitute
	mp insulation morting
	E Commonwood
	$\Rightarrow \beta m$
	E TO THE STATE OF
	$\frac{V_2 = \int V_1 \left(h_1 - 2h_2\right)}{V_2 = \int V_1^2 + 2 \left(h_2 - h_1\right)}$
· ×	11 - 1121216
	$V_2 = \sqrt{V_1^2 + 2(h_2 - h_1)}$
	in the first and the second se
	in - symple to a simple to a s

	7
Q. No.	
ii)	Turbine
	in a de dime
1.01	gramming insulation
1,03	PIVI & B PIVI
	WI B WE
	E CONTRACTOR OF THE PROPERTY O
	WI = WZ STITUTE
	PIVIX29 = PIVIX29
	$W = h_1 - h_2$
	W= ht - h2
	TEN SINE SINE
	व्यक्ता साध्या
	the state of the s

8					
Q. No.					
А	The first of the f				
d)	Carnot cycle				
	Carnot cycle developed by French scienties				
	Sadi carnot in 1839. In this cacle camot				
	state that 100% efficiency engine work.				
	This cycle is practically impossible.				
	isothermal				
	In this 4 process is 2 is isentropic and 2 is				
	adabatic				
	2 / Section (-3)				
	13/16				
	3 4				
	P				
,					
	2 2				
	V 7				
	Process 1-2				
	isothermal heat addition				
	Process 2-3				
	adabatic expansion compression				

	9	
Q. No.		
	process 3-4	
	process 3-4 isothermal heat rejection	
	process 4-1 alabotic expansion.	72
	alaborac expansion.	
	ASTITUTE AND ASTITUTE ASTITUTE AND ASTITUTE ASTITUTE AND ASTITUTE ASTITUT	
	- 12// Cass 152	
	TELESTATION OF THE STATE OF THE	8
	13((高)(高)/(5)	
0	रेड लेक्स सहित्र	
Name		
,		
		,

11 Q. No.

12 Q. No.

Q. No.	
	wifting a state of the state of
0	USTITUTE
	- 13/1/2000 11-3/
	-12/16/2016 P
- ,	
	The state of the s
0	

WSTITUTE
20/20/20/20/20/20/20/20/20/20/20/20/20/2
3/1/3/
THE WASTER
515300
११ तपसा साध्य

U- 134840

Signature of Student

Signature of Invigilator

K. E. Society's

RAJARAMBAPU INSTITUTE OF TECHNOL RAJARAMNAGAR

(An Autonomous Institute affiliated to Shivaji University, Kolhap

CLASS & BRANCH .: S.Y. mechanical	UNIT TEST NO.:
PERMANENT REGISTRATION NO. (PRN) : 2106104	Q. P. CODE : 4719
COURSE NAME: Engineering Thermodynamics.	COURSE CODE : ME 2033
DAY & DATE : 21-12-22	NO. OF SUPPLEMENT

Que.	No.			Sub Total				
		а	b	С	d	е	f	Sub Total
1			e e					
2								
3								
4								
5								
6								4
		Total Marks Obtained						

Signature of Examiner		
3		

IMPORTANT NOTICE

As per Maharashtra Act No. XXXI of 1982 (7&8) whoever is found in or near an examination hall by the invigilator or any other person appointed to supervise the conduct of examination, copying answers to the question paper at the examination, from any book, notes or answer papers of other candidates, or appearing at the examination for any other candidate or using any other unfair means shall, on conviction, be punished with imprisonment for a term which may extend to six months, or with fine which may extend to five thousand rupees or with both. Whoever abets any offence under this act shall be punishable with the punishment provided for the offence.

INSTRUCTIONS

- 1. The answer book supplied to examinees is sufficient for writing answers. The supplement shall be supplied only after the verification by the invigilator.
- 2. It is necessary to write the Question No. and Sub Question No. before answer.
- 3. Write the complete answer in sequential manner and then start the next question in readable handwriting.
- 4. Answer in an illegible and undecipherable handwriting are liable to be marked as zero.
- 5. Use of blue color ink only (except diagrams) is permitted.
- 6. The candidate should not take any books/notes, log table, scribbling pads, cell phones, programmable calculators or any kind of reference material in to the examination hall. The candidate should make sure that he/she has no unauthorized book or paper in the examination hall with him or in his or her desk. he/she should have identity card, and hall ticket. The candidate should not write anything on the hall ticket, identity card, calculator and question paper,
- 7. The candidate should see that the invigilator has appended his/her signature at the specified space on the answer book as and when he/she receives answer book.
- 8. A warning bell shall be given 10 minutes before the commencement of the examination. All the candidates shall take their possession of seats. Another bell shall be given at the beginning of the examination when question paper shall be distributed. No candidate shall be admitted after 30 minutes of the commencement of examination and shall not be allowed to leave the examination hall before 60 minutes after the commencement of examination. No candidate should leave his/her seat during last 10 minutes. Warning bell shall be given 10 minutes before the closing time and final bell is given at the end of the examination. Then all the candidates should stop writing or revising the answer and should hand over the answer book to the invigilator immediately.
- 9. Any candidate appearing for UG/PG examination is liable to be charged for committing malpractice in the following cases:
 - a. Bringing in the examination hall or being found in possession of portions of a book manuscrip programmable calculator any other matter, which is not permissible to be brought into the examination hall.
 - b. Having found any written matter on scribbling pad, question paper, calculator, any part of the body, handkerchief, cloths, socks, instruments box, scales etc.
 - c. Disclosing identity by writing any words or making any peculiar marks on the papers of answer books,
 - d. Copying from the material or matter or answer of another candidate or similar aid or assistance rendered from another candidate within the examination hall.
 - e. Communication with any candidate or any other person inside or outside examination hall with a view to take assistance or aid to write answer in the examination.
 - f. Making any request of representation or offers by threat for inducement or inducing to invigilator or and any another official or officer of the institute or college for favors in the examination hall or the examiner in the answer script.
 - g Smuggling out or smuggling in or tearing of the answer scripts sheets or supplementary sheets or inserting papers within or outside the examination hall into the answer book or running away along with the answer script from the examination hall or premises.
 - H Impersonating or allowing any other person to impersonate to answer in his/her place in the examination hall.
 - I. Supply of copying material inside or from outside the examination hall.
 - j. Bringing mobile phone to the examination hall.
 - k. Unruly behaviour inside or near the examination hall.

	3
Q. No.	3
aJ	
	It is impossible to exacte a divice which
	work on Hermodynamic Cycle. Is to do a
	absorb a heat & convert & equivalent
	to cook athout charging from
0	It is impossible to create a divice
	which work on thermodynamic cycle & to
	do a heat pans absorb or toansfor
	from Low to temperature body to high temper
	-exapper body whichout the
	x - 1 502
\circ	891
	-1- 8T2 8T1
	STI.
	: 892 ST2 891 89, ST, ST2 ST,
	if we have Sq2-ve & Sq, +ve
	: <u>SP, = -8P2</u>
	STI STE
•	

4	
Q. No.	
	: SQ1 + SQ2 ST, 8T2
1500	ST, ST2
1441 4554	Similarly we have
*	503, 564
. 4	503 , 564 873 874
- X 1/2 W	If us at compan this of
V. 13	13/16
	57, 8T2 8T3 8T3
-	ST, 8T2 8 T3 8T3
	610. =0

	5
Q. No.	7
4	(),
6)	914 = 800 K
	FE = 2000 KS
	sink = 800', 780 le
	Syon = Surronding - System
	Sgaps
	(Sink) = - 2000 + 2000 = 1-5"
	Sgn = 2000 + 2000 = 0.16
	(satt) 1 = - 2000 + - 750
	(Sgen) is mon irreversable
	Sgon) b. 13 MON THENESSADIE
	(金) (1000) (1000)
a v	
,	
0	शहे तपसा साध्य

	The Court of the C
8	
Q. No.	
9]	
	Flow gysky
	flow energy = $pvflow$ = $v(p-po)$
	plow = r(p-po)
	energy of flow system & heat apacity brosy
	y = xnonflow + xflow
	Ed Laflau
	= (4-40) +Po(V-VO) -To(5-50) 1 = 472+V(P-Po)
	2/ / (2)
	4= (H-ho) + To (S-So) + = +92
	TESTOS ESTA
	1311(18)
<u></u>	
	् तपसा सा

Q. No.	
0	USTITUTE
	- 13/1/2003/1/C-S-1
	13/16/23/23/23/23/
	विपसा सार्थ
	Won.
•	

Q. No.	
	MSTITUTE
	01111311012
	19 / X 2 20 / C.
	19/1/20/20169
	12 (pulser) = 1 ()
1	र्शे तपसा स्ट्ये
9	(3.4.4)

U- 134841

Signature of Student

K. E. Society's

RAJARAMBAPU INSTITUTE OF TECHNO RAJARAMNAGAR

(An Autonomous Institute affiliated to Shivaji University, Kol

CLASS & BRANCH .: 5. 4. Btech Mechanical Unit TEST NO .: 2
PERMANENT REGISTRATION NO. (PRN) : 2106105 Q. P. CODE : UTIG
COURSE NAME: Engineering Thermodynamic COURSE CODE: MEZO2
DAY & DATE : NO. OF SUPPLEMENT

Que. No			Sub Total				
Que. 14	a	b	С	d	е	f	ous iotai
1							
2							-
3							
4							
5							
6							
			•	Total Ma	arks Obt	tained	8

Signature of Examiner	
3	

IMPORTANT NOTICE

As per Maharashtra Act No. XXXI of 1982 (7&8) whoever is found in or near an examination hall by the invigilator or any other person appointed to supervise the conduct of examination, copying answers to the question paper at the examination, from any book, notes or answer papers of other candidates, or appearing at the examination for any other candidate or using any other unfair means shall, on conviction, be punished with imprisonment for a term which may extend to six months, or with fine which may extend to five thousand rupees or with both. Whoever abets any offence under this act shall be punishable with the punishment provided for the offence.

INSTRUCTIONS

- 1. The answer book supplied to examinees is sufficient for writing answers. The supplement shall be supplied only after the verification by the invigilator.
- 2. It is necessary to write the Question No. and Sub Question No. before answer.
- 3. Write the complete answer in sequential manner and then start the next question in readable handwriting.
- 4. Answer in an illegible and undecipherable handwriting are liable to be marked as zero.
- 5. Use of blue color ink only (except diagrams) is permitted.
- 6. The candidate should not take any books/notes, log table, scribbling pads, cell phones, programmable calculators or any kind of reference material in to the examination hall. The candidate should make sure that he/she has no unauthorized book or paper in the examination hall with him or in his or her desk. he/she should have identity card, and hall ticket. The candidate should not write anything on the hall ticket, identity card, calculator and question paper,
- 7. The candidate should see that the invigilator has appended his/her signature at the specified space on the answer book as and when he/she receives answer book.
- 8. A warning bell shall be given 10 minutes before the commencement of the examination. All the candidates shall take their possession of seats. Another bell shall be given at the beginning of the examination when question paper shall be distributed. No candidate shall be admitted after 30 minutes of the commencement of examination and shall not be allowed to leave the examination hall before 60 minutes after the commencement of examination. No candidate should leave his/her seat during last 10 minutes. Warning bell shall be given 10 minutes before the closing time and final bell is given at the end of the examination. Then all the candidates should stop writing or revising the answer and should hand over the answer book to the invigilator immediately.
- 9. Any candidate appearing for UG/PG examination is liable to be charged for committing malpractice in the following cases:
 - a. Bringing in the examination hall or being found in possession of portions of a book manuscrip programmable calculator any other matter, which is not permissible to be brought into the examination hall
 - b. Having found any written matter on scribbling pad, question paper, calculator, any part of the body, handkerchief, cloths, socks, instruments box, scales etc.
 - c. Disclosing identity by writing any words or making any peculiar marks on the papers of answer books,
 - d. Copying from the material or matter or answer of another candidate or similar aid or assistance rendered from another candidate within the examination hall.
 - e. Communication with any candidate or any other person inside or outside examination hall with a view to take assistance or aid to write answer in the examination.
 - f. Making any request of representation or offers by threat for inducement or inducing to invigilator or and any another official or officer of the institute or college for favors in the examination hall or the examiner in the answer script.
 - g Smuggling out or smuggling in or tearing of the answer scripts sheets or supplementary sheets or inserting papers within or outside the examination hall into the answer book or running away along with the answer script from the examination hall or premises.
 - H Impersonating or allowing any other person to impersonate to answer in his/her place in the examination hall.
 - I. Supply of copying material inside or from outside the examination hall.
 - j. Bringing mobile phone to the examination hall.
 - k. Unruly behaviour inside or near the examination hall.

- 4

	3
Q. No.	
Pue 1	
J	It is thermodynamics evere.
	Id is device which as
12	device operating is in
	thromodynamics cycle to produce no effect
	on other than transfer.
	STITUTE OF THE STATE OF THE STA
	•
	3//2017
	18 1 - 37 - 38 - 18 E
	Solution of the state of the st
	The state of the s
() ₂ ·	Nyer = 1- 892
	891
	Nover 1- Sta
	ST2
	1 GOZ - STZ
	Sq1 ST1
	1 502 - 501 CT CT
	012 01)

4	
Q. No.	
	when Sgi= +ve # Sqz=-ve
	87, 602 87, 872
	SO1 + SO2 -0 27, ST2
	dt, St2
	when etement in another. element.
	303 + 301 = 0
	3673 574
	Education 12
	801 + 802 + 803 + 800 - 0 87, 872 873 874
	For Reneral to Process.
	S Jamer = 0
	For reversible process.
	for reversible process. July = 0
	For irreversible process
	(SOire < 0
	J + -
-	

	5
Q. No.	
1 1	
	9H=750KT TH=550K
	91 = 260 KT T1 = 290 K
	J. = 260 P. 11 = 40 R
	Pa-1-10 C[0] 52
	Reasonable Claim=3
	USTITUTE
	1977 X 2 2 2 X Y C X
	- 13/1/ Care 1/3/2/
4	19/16/2018
	13 (Rest) (S)
	Range Company of the
	\ \ \\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\
0	रह तपसा सार

Q. No.	
Quel	
J	
(d)	=) Mosg = m = 500 kg
<u> </u>	T,= 200°C= 473 K
	$T_2 = 27^{\circ} c = 300 \text{k}$
	to = 27° c = 300 K
	CP=0.9KJ/KgK
	permine reversible work dirreversibillity?
	What = QH-GL
	18-9
	[5] [章(•)[6] [5]
	13\\Emilion 18F8=1//2/
0 0	ि तपसा सार
	·

Q. No.	
(C):	-) o Mole tradion=)
	@ Maye fractions
	(2)/ No. 10 (C.S.)
	[3] [2]
\	
	3 Avagadoo's Principles
	विषया संस्थित
()	
¥	(P) Dalton's lace of partial pressure=)

Q. No.	
	INSTITUTE
	(8) / Marie (1) (2)
	3// 3/2
	- [5] [章(e)[6] [5]
	12/10/06/09/19
	रिक्षे तपसा साध्या
0	TO A COLUMN TO THE COLUMN TO T
• Annual Control of the Control of t	

Q. No.	
-	
0	NSTITUTE OF
	\$ (E & C & E & E & E & E & E & E & E & E &
()	

4	
Q. No.	
· · · · · · ·	
	NSTITUTE
	2/1/2
	13/// 300 11/61
	311=3(3)3=15
	Instituted ()
<u> </u>	1978 - 10.21
()	शहे तपसा साहर्य

134828

Signature of Invigilator

K. E. Society's

RAJARAMBAPU INSTITUTE OF TECHNO RAJARAMNAGAR

(An Autonomous Institute affiliated to Shivaji University, Kol

Que. No.	Marks						Sub Total
	а	b	С	d	е	f	045 1044
1							
2							
3							
4							5
5		3			ALC: V		
6							8
				Total Ma	arks Ob	tained	8

Signature of Examiner	
-----------------------	--

IMPORTANT NOTICE

As per Maharashtra Act No. XXXI of 1982 (7&8) whoever is found in or near an examination hall by the invigilator or any other person appointed to supervise the conduct of examination, copying answers to the question paper at the examination, from any book, notes or answer papers of other candidates, or appearing at the examination for any other candidate or using any other unfair means shall, on conviction, be punished with imprisonment for a term which may extend to six months, or with fine which may extend to five thousand rupees or with both. Whoever abets any offence under this act shall be punishable with the punishment provided for the offence.

INSTRUCTIONS

- The answer book supplied to examinees is sufficient for writing answers. The supplement shall be supplied only after the verification by the invigilator.
- It is necessary to write the Question No. and Sub Question No. before answer. 2.
- Write the complete answer in sequential manner and then start the next question in readable handwriting. 3.
- Answer in an illegible and undecipherable handwriting are liable to be marked as zero.
- Use of blue color ink only (except diagrams) is permitted.
- The candidate should not take any books/notes, log table, scribbling pads, cell phones, programm ; calculators or any kind of reference material in to the examination hall. The candidate should make sure that he/she has no unauthorized book or paper in the examination hall with him or in his or her desk, he/she should have identity card, and hall ticket. The candidate should not write anything on the hall ticket, identity card, calculator and question paper,
- The candidate should see that the invigilator has appended his/her signature at the specified space on 7. the answer book as and when he/she receives answer book.
- A warning bell shall be given 10 minutes before the commencement of the examination. All the candidates shall take their possession of seats. Another bell shall be given at the beginning of the examination when question paper shall be distributed. No candidate shall be admitted after 30 minutes of the commencement of examination and shall not be allowed to leave the examination hall before 60 minutes after the commencement of examination. No candidate should leave his/her seat during last 10 minutes. Warning bell shall be given 10 minutes before the closing time and final bell is given at the end of the examination. Then all the candidates should stop writing or revising the answer and should hand over the answer book to the invigilator immediately.
- 9. Any candidate appearing for UG/PG examination is liable to be charged for committing malpractice in the following cases:
 - Bringing in the examination hall or being found in possession of portions of a book manuscri---, programmable calculator any other matter, which is not permissible to be brought into the examination hall.
 - Having found any written matter on scribbling pad, question paper, calculator, any part of the body, b. handkerchief, cloths, socks, instruments box, scales etc.
 - Disclosing identity by writing any words or making any peculiar marks on the papers of answer books,
 - Copying from the material or matter or answer of another candidate or similar aid or assistance rendered d. from another candidate within the examination hall.
 - Communication with any candidate or any other person inside or outside examination hall with a view e. to take assistance or aid to write answer in the examination.
 - Making any request of representation or offers by threat for inducement or inducing to invigilator or and f. any another official or officer of the institute or college for favors in the examination hall or the examiner in the answer script.
 - Smuggling out or smuggling in or tearing of the answer scripts sheets or supplementary sheets or g inserting papers within or outside the examination hall into the answer book or running away along with the answer script from the examination hall or premises.
 - Impersonating or allowing any other person to impersonate to answer in his/her place in the H examination hall.
 - I. Supply of copying material inside or from outside the examination hall.
 - Bringing mobile phone to the examination hall. i.
 - Unruly behaviour inside or near the examination hall. k.

Q. No.	
Q 1]	
<u>a</u>	clausius theorem :-
	clausius theorem state that, there is not
	possible of carnot operate carnot cycle at
	all state & the heat transfer from
	higher temp. to lower temperature
\bigcirc	There is no heat engine have thermal
	efficiency 100%
	Violation of clausius theorem is used in
	second law of theomodynamics.
(*)	रिहे तपसा साध्य

Q. No.	
b)	Given:
	QTH = 750 KJ
	TI = 550 K
	QTL = 260 KJ
	$T_2 = 290 \text{K}$
	T = 800K
•	$Q_{T} = 2000KJ$ $m_{TH}Cp. T_1 = m_{TC}p. T_2$
	150 X 330 = 280 X . J
	$T_2 = 750 \text{ K}$ $412566 > 75900$
	THOTTL
8	n = 1 - TL or $= TH - TL$
')	TH
	=1-260 $= 750-260$
	750 750
	= 0.65 or $= 0.65$
	शहे तपसा साध्य
(ii	N-1-TH OR = TL-TH TL
7	TL
	= 1-58 -1-88 OR = -1-58 -1-88
	Therefore it is reasonable claime because
	Saen is always greater than Ofitis
	positive. And irreversible heat engine is great always lower than reversible
	great always lower than reversible
	heat engine. And, Here the THIS
	U

6	
Q. No.	greater than Ti.
	so the it is reasonable claim.
	14 121
	OR THION AND
<u>[d.</u>	Given:-
	To = 800 K
.1	$M_1 = 200 \text{ k.T}$
	T ₁ = 500 K
	$T_2 = 750 t$
	Process (a) is more irreversible than
	Process (b)
	प्रिकृतपुसा साध्य
	Vary graft and a large same
10 7 10	sought a statury in a firm of an after
. 1 (1	the moule a diverge expense.
1.1.1.2.2.2	and the first of the same of t
2 2 2 3 1 1	
	All the the first and the second

Q. No.	
-	mole fraction, Avagadro's principle &
	Palton's law of partial pressure are the
	different properties in thermodynamics.
	from this we understand that there
	are constant terms in all above
	properties. Such as in Avagadro's principle
	there is constant Avagadro no. etc.
	These are very important properties
	in thermodynamics.
	mole fraction is the ratio of no of
	moles & total males.
	In all above terms pressure, mass
	are the properties terms used.
	Mass & pressure are constantly used.
0	र्रहे तपसा सार्
	1 -11 -11 - R - 2010 F - (mill - 17 1) - 17 11 - 1
	The probability of the property of the second

8	
Q. No.	
<u> </u>	m: = 500 kg
	$to = 200^{\circ}C = 200 + 073 = 473 \text{ K}$
	T= 27°C = 27 + 273 = 300 K
agadt la	Tatm = 27°C = 21 + 273 = 300 x.
	Cp = 0.4 kJ/kgk
	Wrev = 8
	Idrev = 8
	NSTITUTE
	F, = m cp [(To-Tatm) - Tatm ln [To]]
	[Tatm]]
	= 500 x 0.4 [(413-300)-300 ln [473]]
	[300]
	= 200 [(113) - 59.32]
4	= 200 (113-68)
	= 22736
	OR O
	F. = m Cp[(Tf-Tatm) - Tatm ln[Tf]
	= 500 x0.4 [(300-300) - 300 ln [300]]
	= 200 [0]
,	= 2000
	$E_1 - E_2 = 22736 - \frac{200}{3} = 22936$

Applied Thermodynamics ISE Test 1 SY BTech Mechanical Div A&B

		Name - Newchi Pahl	rechanical DIV A&B	Roll No. 1606096
	1.	A metal rod is shaped into a ring w	rith a small gap. If this is heate	ď
		the length of the rod will increa	se	
	1.4	(B) the gap will decrease	집 경기를 하는 것이 되었다.	
0.33		(C) the gap will increase (D) the diameter of the ring will inc	and the the same anti-	longth of the rod
-/		(b) the diameter of the ring will inc	ease in the same ratio as the	rengin or the rod
	2.	A gas with $\frac{C_p}{C_v} = \gamma$ goes from an in	nitial state (p_1, V_1, T_1) to a final	state (p ₂ , V ₂ , T ₂) through an
		adiabatic process. The work done	by the gas is	
0.5		(A) $\frac{nR(T_1 - T_2)}{y - 1}$	$(B) \frac{p_1 V_1 - p_2 V_2}{\gamma - 1}$	
0)		보는 보통하다 마음이 하다 사람들이 되었다. 그 그 없는 사람들은 사람들이 되었다.		
		(C) $\frac{p_1V_1 - p_2V_2}{\gamma + 1}$	(D)•nRT (T, −T₂)
γ	3.	A gas may expand either adiabatic the two process over different rang	es of pressure and volume. It	
		(A) two adiabatic curves do not inte		
0.25		(C) an adiabatic curve and an isoth		
`		(D) the magnitude of the slope of		same value of pressure and
		volume		
	4.	A gas expands such that its initial a	and final temperature are equa	il. Also, the process followed
	12	by the gas traces a straight line on		
		(A) the temperature of the gas remains	ains constant throughout	
0.0		(B) the temperature of the gas first	increase and then decrease	
0,5		(C) the temperature of the gas first		
		(B) the straight line has a negative	slope.	
. **	5.	Two gases have the same initial	pressure, volume and tempe	rature. They expand to the
		same final volume, one adiabatical	[2] [1] [1] [1] [1] [1] [1] [1] [1] [1] [1	
		(A) the final temperature is greater:	for the isothermal process	
0		(B) the final pressure is greater for		
O		(C) the work done by the gas is gre	그리아이 아이를 하는 것이 되고 살아왔다면 하셨다면 그 아이는 이번 후하셨다고 되었다고 하네요? 이 모든 이번에	
		(all the above options are income	C t	
2	6	In the previous question, if the two	pases are compressed to the	same final volume
		(A) the final temperature is greater		
0.0		(B) the final pressure is greater for		
1.23		(C) the work done on the greater for		SARSHAT.
		(D) all the about ontions incorrect		
	7.	The first law of thermodynamics inc	ornorates the concents of	
		(6) conservation of energy	(B) conservation	of heat
0.5		(C) conservation of work		of heat and work
•				
	8.	A vessel contains 1 mole of O ₂ at		
		vessel containing 1 mole of the gas		sure of
1		(A) P	2P 2P	
1		(C) 3P	(D) 4P	
	9.	For an ideal gas,		
		(A) the change in internal energy in	a constant pressure amones	from townsons on T to T in
		equal to nC _v (T ₂ - T ₁), where C _v in number of moles of the gas		
0.25		(B) the change in internal energy a magnitude in an adiabetic proce		ne by the gas are equal in
•		(C) the internal energy does not cha		
		(D) no heat is added or removed in a		

10. The molar heat capacity for an ideal gas (A) is zero for an adiabatic process (B) is infinite for an isothermal process (C) depends only on the nature of the gas for a process in which either volume or pressure is 0.25 is equal to the product of the molecular weight and specific heat capacity for any process C, is always greater than C, for a gas. Which of the following statements provide, partly or wholly, the reason for this? (A) no work done by a gas at constant volume (B) When a gas absorbs heat at constant pressure, its volume must change (C) for the same change in temperature, the internal energy of a gas changes by a smaller amount at constant volume than at constant change (D) the internal energy of an ideal gas is a function only of its temperature A system undergoes a cyclic process in which it absorbs Q, heat and gives out Q, heat. The 12. efficiency of the process is n and the work done is W. $(A)W=Q_1-Q_2$ (D) $\eta = 1 - \frac{Q_2}{Q}$ When an enclosed perfect gas is subjected to an adiabatic process: (A) its total internal energy does not change (B) its total internal energy changes (C) its pressure varies inversely as a certain power of its volume (B) the product of its pressure and volume is directly proportional to its absolute temperature. 14. In the isothermal expansion of an ideal gas: there is no change in the temperature of the gas (B) there is no change in the internal energy of the gas (C) the work done by the gas is equal to the heat supplied to the gas (D) the work done by the gas is equal to the change in its internal energy. An ideal gas is taken from the state A (pressure P, volume V) to the state B (pressure P12, volume 2V) along a straight line

path in the P-V diagram. Select the correct statement (s)

(A) The work done by the gas in the process A to B exceeds the work that would be done by it, if the system were

from the following

0.33

In going from A to B, then temperature T of the gas first increase maximum volume and then decrease.

Applied Thermodynamics ISE Test 1 SY BTech Mechanical Div A&B

		Mechanical Div A&B	
	Name-OMKaz Bha	skar patil	Roll No. 1606095
1.	A metal rod is shaped into a ring v	vith a small gap. If this is heated	DIV- B
	(A) the length of the rod will increa	선생님이 되는 사람들이 되었다면 가장 하는 것이 없는 것이 없는 것이 없다면 하셨다.	
20	(B) the gap will decrease		
2)	(C) the gap will increase		
	(D) the diameter of the ring will inc	rease in the same ratio as the le	ength of the rod
2.	A gas with $\frac{C_p}{c} = \gamma$ goes from an i	nitial state (p,, V,, T,) to a final s	tate (p ₂ , V ₂ , T ₂) through an
	adiabatic process. The work done		
	(A) $\frac{nR(T_1 - T_2)}{\gamma - 1}$	(B) $\frac{p_1V_1 - p_2V_2}{\gamma - 1}$	
		γ−1	
	(C) $\frac{p_1V_1 - p_2V_2}{\gamma + 1}$	(D)-nRT (T, -Tz)	
з.	A gas may expand either adiabation the two process over different range.		
	(A) two adiabatic curves do not inte		
5	(B) two isothermal curves do not in		
J.	(C) an adiabatic curve and an isoth		
	(D) the magnitude of the slope of volume	an isothermal curve for the sa	ime value of pressure and
	VOIDINE		
4.	A gas expands such that its initial	and final temperature are equal.	Also, the process followed
	by the gas traces a straight line on		
	(A) the temperature of the gas rem	ains constant throughout	
	(B) the temperature of the gas first		
	(C) the temperature of the gas first		
	(D) the straight line has a negative	slope.	
5.	Two gases have the same initial	pressure volume and tempers	ture. They expand to the
	same final volume, one adiabatical	는 HT () [4] 하는 HT () 보고 있는 HT () [4] 사람들은 HT () HT	note: They expand to the
	(A) the final temperature is greater		
ζ	(B) the final pressure is greater for		
)	(C) the work done by the gas is gre	ater for the isothermal process.	
	(D) all the above options are incom-	ect	
6	In the previous question, if the two	gases are compressed to the sa	me final volume
100	(A) the final temperature is greater		
	(B) the final pressure is greater for		
	(C) the work done on the greater fo	r the adiabatic process	19 Hz
175	teamenni nacitan alla e ad ile (C)		
7.	The first law of thermodynamics inc	corporates the concepts of	
	(A) conservation of energy	(B) conservation of	f heat
	(C) conservation of work	(D) equivalence of	
8.	A vessel contains 1 mole of O ₂ at	a lemperature T. The pressure	of cas is P. An identical
	vessel containing 1 mole of the gas		
	(A) P	√(8)-2P	
	(C) 3P	(D) 4P	
		7	
9.	For an ideal gas,		
	(A) the change in internal energy in	a constant pressure process fro	om temperature T, to T2 is
	equal to nC ₁ (T ₂ - T ₁), where C ₁ number of moles of the gas	is the molar heat capacity at co	nstant volume and n is the
		of the gas and the work done	by the gas are equal in
15		중요 그 그 그 그 그래요 그렇게 되면 되었다. 그래 그래요 그 그 그래요 그 그 그래요 그 그래요 그 그 그 그	· · · · · · · · · · · · · · · · · · ·
25	magnitude in an adiabatic proce	SS .	
5			

- The molar heat capacity for an ideal gas
 - (A) is zero for an adiabatic process
 - (8) is infinite for an isothermal process
 - (C) depends only on the nature of the gas for a process in which either volume or pressure is constant.
 - (D) is equal to the product of the molecular weight and specific heat capacity for any process
- 11. C_p is always greater than C_s for a gas. Which of the following statements provide, partly or whofly, the reason for this?
 - (A) no work done by a gas at constant volume
 - (8) When a gas absorbs heat at constant pressure, its volume must change
 - (C) for the same change in temperature, the internal energy of a gas changes by a smaller amount at constant volume than at constant change
 - (D) the internal energy of an ideal gas is a function only of its temperature
- 12. A system undergoes a cyclic process in which it absorbs Q₁ heat and gives out Q₂, heat. The efficiency of the process is η and the work done is W.

(B)
$$\eta = \frac{vv}{Q_s}$$

$$(C)\eta = \frac{Q_2}{Q}$$

0.33

0

.33

0.66

(D)
$$\eta = 1 - \frac{Q_2}{Q_1}$$

- 13. When an enclosed perfect gas is subjected to an adiabatic process:
 - (A) its total internal energy does not change
 - (B) its total internal energy changes
 - (C) its pressure varies inversely as a certain power of its volume
 - (D) the product of its pressure and volume is directly proportional to its absolute temperature.
- 14. In the isothermal expansion of an ideal gas:
 - (A) there is no change in the temperature of the gas
 - (B) there is no change in the internal energy of the gas
 - (C) the work done by the gas is equal to the heat supplied to the gas
 - (D) the work done by the gas is equal to the change in its internal energy.
- 15. An ideal gas is taken from the state A (pressure P, volume V) to the state B (pressure P/2, volume 2V) along a straight line path in the P-V diagram. Select the correct statement (s) from the following
 - (A) The work done by the gas in the process A to B exceeds the work that would be done by it, if the system were taken from A to B along the isotherm.

- (B) In the T-V diagram, the path AB becomes a part of parabola.
- (C) In the P-T diagram, the path AB becomes a hyperbola.
- (D) In going from A to B, then temperature T of the gas first increase maximum volume and then decrease.

Course: Engg Thermodynamics ME2032 Class: S Y B Tech Mechanical Div A ISE 1 MCQ quiz on Moodle

Quiz sample questions

In which no mass can enter or leave the system and no energy can enter or	
in which no mass can enter or leave the system and no energy can enter or leave the system is called as	
Open system	
O Closed system	
Isolated system None of the mentioned	
A machine which can supply mechanical work continuously without consumption	
a machine which can supply mechanical work continuously without consumption of any energy is called as	
O Perpetual Motion Machine of the First kind (PMM1)	
OPerpetual Motion Machine of the Second kind (PMM2) OPerpetual Motion Machine of the Third kind (PMM3)	
O none of the mentioned	
A process that passes through number of equilibrium states is called as	
A process that passes through number of equilibrium states is called as	
O Reversible process	
O Irreversible process	
None of the mentioned	
O Isentropic process	

Quiz assessment

ISE 2 PBL : PPM concept and working model realization

a) PPM concept

b) CAD Modeling of the Concept:

c) Video presentation on model developed, Link: https://www.youtube.com/watch?v=DUE2X0LjXe8&t=87s

forms the basis for development of mercury tube thermometer
forms the basis for development of mercury tube thermometer
 First law of thermodynamics Second law of thermodynamics Zeroth law of thermodynamics None of the mentioned
forms the basis for development of mercury tube thermometer
forms the basis for development of mercury tube thermometer
 First law of thermodynamics Second law of thermodynamics Zeroth law of thermodynamics None of the mentioned
A cyclic heat engine operates between a source temperature of 927 degree C
A cyclic heat engine operates between a source temperature of 927 degree C and a sink temperature of 27 degree C. What will be the maximum efficiency of the heat engine?
01
0.8 0.75 0.7
A machine which can supply mechanical work continuously without consumption
A machine which can supply mechanical work continuously without consumption of any energy is called as
O Perpetual Motion Machine of the First kind (PMM1)
O Perpetual Motion Machine of the Second kind (PMM2) O Perpetual Motion Machine of the Third kind (PMM3) O none of the mentioned
A machine which can supply mechanical work continuously without consumption
A machine which can supply mechanical work continuously without consumption of any energy is called as
O Perpetual Motion Machine of the First kind (PMM1)
O Perpetual Motion Machine of the Second kind (PMM2) O Perpetual Motion Machine of the Third kind (PMM3) O none of the mentioned
A process that passes through number of equilibrium states is called as
A process that passes through number of equilibrium states is called as
O Reversible process
O Irreversible process O None of the mentioned Isentropic process
A process that passes through number of equilibrium states is called as
A process that passes through number of equilibrium states is called as
O Reversible process
○ Irreversible process ○ None of the mentioned ○ Isentropic process
A quasi-static process has main characteristics as it is
A quasi-static process has main characteristics as it is

a stationary process
an infinitely slow process
a random process
file:///C:/Users/admin/Downloads/questions-ET_A_22-Default for Eth20_21A-20231012-2005.html

10/12/23, 8:08 PM O a spontaneous process	Moodle Quiz XHTML Export
quasi-static process has main charact	teristics as it is
quasi-static process has main characteristics as	s it is
a stationary processan infinitely slow processa random processa spontaneous process	
refrigerator and heat pump operates	between same temperature limits. If the
refrigerator and heat pump operates between s	same temperature limits. If the COP of the refrigertor is 4, what is the COP of heat pump?
○3	
05	
04	
○3.4	
Open system Closed system Isolated system None of the mentioned	e system and no energy can enter or leave the system is called as
system in which no mass can enter or	r leave the system and no energy can
system in which no mass can enter or leave the	e system and no energy can enter or leave the system is called as
Open system	
O Closed system	
O Isolated system	
O None of the mentioned	
according to first law of thermodynamic	re
according to mist law or thermodynamic	
ccording to first law of thermodynamics	
owork done by a system is equal to heat trotal internal energy of a system during a internal energy, enthalpy and entropy durotal energy of a system remains constant	process remains constant ring a process remain constant
according to first law of thermodynamic	cs
ccording to first law of thermodynamics	
Owork done by a system is equal to heat tr	ansferred by the system

Ototal internal energy of a system during a process remains constant

Ointernal energy, enthalpy and entropy during a process remain constant

Ototal energy of a system remains constant

An air-conditioner provides 1 kg/s of air at 15 degree C cooled from outside ...

An air-conditioner provides 1 kg/s of air at 15 degree C cooled from outside atmospheric air at 35 degree C. Estimate the amount of power needed to operate the air-conditioner.

01.09 kW

01.19 kW

01.29 kW

01.39 kW

Closed system is also called as

Closed system is also called as

O Control volume

		Group Members
-	Roll No.	Name
	2006049	Omkar Basavraj Ainapure
-	2006062	Atharv Ajay Mahajan
-	2006064	Prathmesh Mahadev Patil
	2006065	Sujit Shrikrishna Patil
-	2006066	Shreesumera Premraj Jaaju
Group 1	2006050	Shailendra Dattatray Patange
Group 1	2006054	
-	2006048	Jaykumar Sandeep Jadhav
-	2006044	Prathmesh Rahul Kamble
-		Yash Rajendra Kumbhar
_	2006043	Rohan Ramesh Chavan
	2006067	Prathamesh Shashikant Petare
Group 2	Optional	Rohan Santosh Padale
	2006005	Suraj Satish jadhav
_	2006011	Ashraf Bhola gavandi
	2006022	Sanket Dadaso Patil
	2006034	Sagar Sanjay Jadhav
	2006036	Prathamesh Vikas Patil
Group 3	Optional	
	2006004	Shreeyash Ashokrao Jadhav
	2006020	Amarsinh Sanjay Patil
	2006030	Nikhil Vitthal Jadhav
	2006032	Atharv Mahesh Ubale
	2006056	Sourabh Hanamantrao Patil
Group 4	2006009	Harshwardhan Deepak Patil
	2006015	Gourav Anil Chavan
	2006046	Kaushik Deepak Kole
	2006055	Junaid Mouzam Desai
	2006007	Anurag Vijaykumar Dharav
	2006013	Abhijeet Jitendra Kale
Group 5	2006045	Dnyaneshwar Hange
	2006006	Samarjeet Virajit Ghorpade
Γ	2006008	Kedar Sanjay Hajare
	2006012	Niranjan Shivaji Khandagale
	2006002	Jayraj Prataprao Patil
	2006027	Ajay Suresh Jadhav
Group 6	2006023	Prathamesh Dattatray Mhetre
	2006019	Aniket Vijay damkale
	2006051	Adarsh Anant Bhosle
T	2006053	shubhekshan Sunil Gurjar
-	2006057	Pranav Avinash Patil
-	2006061	Mayuresh Vijay Mali
Group 7	2006047	kedar Rajendra Kadam
STOUP !	2005059	Bhushan Vinayak Koparde
-	2006001	Prajyot Ramesh Desai
-	2006011	
-		Pratik Vikas Pawar
L	2006021	Vinit Vyankatrao kale

	2006039	Varad Sharad shinde
Group 8	2006033	sanket Maruti Desai
	2006016	Gauri Tukaram Ghanwat
	2006026	shraddha Maruti Yedage
	2006058	pooja vikas ljare
	2006017	SALUNKHE PRATIK RAVIKANT
	2006018	PADALE ROHAN SANTOSH
Group 9		
	2006003	chinmay pramod more
	2006042	sanket shashikant adsul
	2006028	PAWAR KISHOR RAJENDRA
	2006031	MORE SHIVAM VINOD
	2006035	KUMBHAR NIKITA SANJAY
Group 10	Optional	
	2006037	THORAT SHREYA BHIMRAO
	2006038	KATKAR AASHUTOSH DIPAK
	2006041	PATIL SHIVANI DILIP
	2006052	JADHAV ROHAN PARSHURAM
	2006025	PATIL PRADYUMNA PRASHANT
Group 11	Optional	

Q1. Study the refrigeration system and perform the first law and second law analysis on the system by using following data.

Group 1 – use R12 as refrigerant

Group 2 - R22

Group 3 - R134a

Sr. No.	Description	Symbol	Unit	Quantity	
1	1 Condensing pressure		PSI	150	
2	Evaporating Pressure	Pe	PSI	45	
3	Rotameter flow rate	m	LPH	20	
4	Condenser Inlet Temp	T1	°C_	52	
5	Condenser Outlet Temp	T2	⁰ C	30	
6	Evaporator Inlet Temp	Т3	°C	2	
7	Evaporator outlet Temp	T4	°C	13	

Q2. Study the steam power plant and perform the first law and second law analysis on the system by using following data.

Group 4

	Observation Table for Steam Power Plant				
Sr. No.	Description	Symbol	Unit	Quantity	
	Boiler Section				
1	fuel consumption	mf	kg/hr	36	
2	Calorific Value	LHV	KJ/kg	45000	
3	Water Inlet Temperature	T1	⁰ C	27	
4	Steam Temperature	T2	⁰ C	192	
5	Steam Pressure	Psteam	bar	11.5	
	Turbine Section				
1	Exhaust Pressure	Pexhast	bar	0.23	
2	Exhaust Temperature	T3	°C	98	
	Generator Section	n			
1	Current	I	A	4.36	
2	Voltage	V	V	230	
	Condenser Section	n			

1	Cooling water inlet temperature	T4	°C	30
2	Cooling water outlet temperature	T5	°C	36

Q3. By using the following data perform the first law and second law analysis

Group 5

Dia of the metal rod = 25 mm

Distance between the adjacent thermocouple = 50

mm

mass flow rate of water = 0.023 kg/s

Thermal conductivity k = 385 W/mK

Tempe	rature		ent poin	t along the	ne thei	moce	ouple	Temper		
T1		T2		T3	T4		T5	T6	T7	
	52		49	45		42	39	27		29

Group 6

Dia of the metal rod = 30 mm

Distance between the adjacent thermocouple = 60

mm

mass flow rate of water = 0.023 kg/s

Thermal conductivity k = 385 W/mK

Tem	perature		rent poin unted on		he the	rmoc	ouple	Tempe inlet as	erature f	or the water
T1		T2		T3	T4		T5	T6	T7	
	52		49	4	5	42	39	2	7	29

Q4. Study the IC Engine and perform the first law and second law analysis on the system by using following data.

Group 7 - Load 1

Group 8 - Load 2

Group 9 - Load 3

Group 10 - Load 4

Sr. No.	Description		Quar	ntity	
51. 140.	Description	Load 1	Load 2	Load 3	Load 4
1	Net Torque in kN- m	0.0104	0.0209	0.031	0.002967
2	Speed in RPM	1590	1585	1540	1610
3	Temp of Inlet trough jacket	25	25	25	25
. 4	Temp ofoutlet trough jacket	36	39	40	33
5	Fuel Consumption (kg/s)	0.000249	0.000327	0.000425	0.000202
6	Water flow rate in jacket(kg/s)	0.149254	0.140845	0.126582	0.15873
7	Tempearture of inlet water to calorimeter	25	25	25	25
8	Tempearture of outlet water to calorimeter	39	43	47	30
9	Temperature for the exhaust gas inlet	145	180	220	110
10	Temperature for exhaust gas outlet	85	100	115	60
11	Water flow rate in calorimeter	0.055866	0.051282	0.05102	0.081301

Q 5

Study the steam power plant and perform the first law and second law analysis on the system by using following data.

Group 11

	Observation Table for Steam Power Plant			
Sr. No.	Description	Symbol	Unit	Quantity
<u> </u>	Boiler Section			
1	fuel consumption	mf	kg/hr	40

2	Calorific Value	LHV	KJ/kg	45500
3	Water Inlet Temperature	T1	⁰ C	27
4	Steam Temperature	T2	⁰ C	220
5	Steam Pressure	Psteam	bar	12
	Turbine Section	n		
1	Exhaust Pressure	Pexhast	bar	0.5
2	Exhaust Temperature	Т3	°C	98
	Generator Section	on		
1	Current	I	A	4.36
2	Voltage	V	V	230
	Condenser Secti	on		
1	Cooling water inlet temperature	T4	0°C	30
2	Cooling water outlet temperature	T5	°C	36

21060 22

first law of thermodynamics (conservation of energy) analysis

The first law of thermodynamics states that energy can neither be created nor destroyed, but it can be converted from one form to another. For an internal combustion engine System, energy is converted from the chemical energy of the fuel to the thermal energy of the engine and the exhaust gases, as well as to mechanical energy that drives the engine.

Based on the given data, the energy input to the system is the chemical energy of the fuel, which can be calculated as follows:

Q-in = Fuel consumption * Calorific value of fuel

The energy output of the system is the thermal energy of the engine and the exhaust gases, as well as the mechanical energy output. The thermal energy of the engine and the exhaust gases can be calculated as Follows:

@ out = (Temperature _outlet - jacket - Temperature _inlet_jacket * mass Flow rate * Sepecific heat capacity of water

The mechanical energy output can be calculated using the net torque and speed of the engine.

Second law of thermodynamics (Entropy) analysis

The second law of thermodynamics states that the entropy of a closed system will always increase over time. This law can be used to calculate the thermal efficiency of an internal combustion engine system, which is defined as the ratio of the useful work output to the total energy input.

The thermal efficiency of the engine can be calculated as follows:

n = (mechanical energy output) / (Energy input - waste heal)

Maste heat is the energy that is lost as heat in the exhaust gases and the cooling water, which can be calculated as follows

Maste heat = (Temperature exhaust outlet - Temperature exhaust inlet) * Mass flow rate * specific heat capacity of exhaust gases + (Temperature outlet water - Temperature inlet water) & Mass flow rate * specific heat capacity of water.

SY MECHANICAL

Enroll. No.	2106021	2106047
Student Name	Sanika sunil suryavanshi	Avantika Dipak More
Sr. No.	÷ (, e.

NTENT

irst law of Thermodynamic

econd law of Thermodynamic

hermal Conductivity

ntropy generation in heat transfer

umerical

irst law of modynamic

an neither be created nor can yed but transformation of one another form can be

internal energy of a system is eat added to system minus the by the system

M-M

HEAT ADDED WORKDONE TO SYSTEM BY SYSTEM

Conversion of electrical energy into mechanical energy.

on a table will melt on it's own.

Second law of thermodynamics

- The second law of thermodynamics can be stated in three ways.
- Second law of thermodynamics for heat engine (Kelvin Planck's statement)
- Second law of thermodynamics for heat pump/refrigerator (Clausius's statement)
 - Second law of thermodynamics based on entropy
- Kelvin Planck's statement:
- "It is impossible to construct a device (operating in a cycle) which
 works on a single heat source and converts all of its heat
 completely in to work"
- Clausius's statement:
- It is impossible to construct a device (operating in a cycle) that can transfer heat from cold body to the hot body without absorbing any work."
- Entropy
- In all the spontaneous processes, the entropy of the universe increases."

al Conductivity

tivity can be defined as the rate at which heat is transferred by conduction through a unit ea of a material, when a temperature gradient exits perpendicular to the area.

ductivity eat transferred

ween two isothermal plans

ė

in temperature

ty is actually about the conduction of heat or transfer of heat. 2) Pouring of hot tea in a cup will make the cup of use of the heat transfer from tea to the cup. 3) Transfer of heat from iron to shirt while pressing is also a good

4AL CONDUCTIVITY AND WHY IS IT IMPORTANT?

ty is a property that describes how well heat flows through a substance. The higher the thermal conductivity, the onducts heat.

py generation

eans of heat flow through a thermal resistance, fluid flow through a flow resistance, diffusion, Joule heating, friction amic system, the entropy generation is the amount of entropy which is created generally during irreversible urfaces, fluid viscosity within a system etc.

heration rate (Sgm) is associated with the losses in a process, and can be defined as entropy balance equation for a

as follows:

$$\underbrace{S_{in} - S_{out}}_{\text{Net entropy transfer}} + \underbrace{S_{gen}}_{\text{Entropy}} = \underbrace{\Delta S_{\text{system}}}_{\text{Change}} \quad \text{(kJ/K)}$$

easure of the energy dispersal in the system. We see evidence that the universe tends toward highest entropy many es. A campfire is an example of entropy. The solid wood burns and becomes ash, smoke and gases, all of which utwards more easily than the solid fuel.

ence between entropy and entropy generation?

neration is a measure of the magnitudes of the irreversibilities present during the process. Entropy is a measure of der or randomness of a system, and the second law states that entropy can be created but it cannot be destroyed.

eneration be zero?

cs' second law states that the rate of generation of entropy within a system must be greater than or equal to zero.

$$(1,2) = \frac{-3}{60 \times 10^{-3}} = -50$$

$$(2,3) = \frac{-4}{60 \times 10^{-3}} = -66$$

$$(3,4) = \frac{-3}{60 \times 10^{-3}} = -50$$

$$(4.5) = \frac{-3}{-3} = -50$$

$$(4,5) = \frac{-3}{60 \times 10^{-3}} = -5$$

$$(avg) = -54$$

A.
$$\frac{dt}{dx}$$
 - mcp ΔT = losses

$$35 \times 7.06 \times -54$$
) $- (0.023 \times 420 \times 2) = losses$

sses=
$$1.4 \times 10^5$$

iciency =
$$\frac{mcp\Delta T}{K.A. \frac{dt}{dx}}$$
 = -19.13%

$$\Delta S gen = \frac{Q}{52 + 273} - \frac{Q}{39 + 273} = -18$$

 $P1 = 1*10^5$, $P2 = 8.3*10^5$, T1 = 288, Cp = 0.88, m = 0.05, v2 = 0.004

P1 = 100000

P2 = 8.3000e+05

T1 = 288

Cp = 0.8800

m = 0.0500

v2 = 0.0040

R = 8.314/44

R = 0.1890

Cv = Cp + R

Cv = 1.0690

% Using perfect gas equation at state 1 v1 = (m*R*T1)/P1

v1 = 2.7209e-05

% at state 2 T2 = (P2*v2)/(m*R)

T2 = 3.5141e+05

T2 = 351.41

T2 = 351,4100

% change in entropy S = (Cp*log(T2/T1)) - (R*log(P2/P1))

5 = -0.2248

% for given mass Ms = S*m

Ms = -0.0112

```
Entropy
#include<stdio.h>
#include<math.h>
int main()
{
  float v1,v2,v3,T1,T2,T3,p1,p2;
printf("Enter volume v1:\n");
scanf("%f",&v1);
printf("Enter temperature T1 in kelvin\n");
scanf("%f",&T1);
printf("Enter temperature T2 in kelvin\n");
scanf("%f",&T2);
printf("Enter pressure p1 in N/M2\n");
scanf("%f",&p1);
p2=p1;
printf("\nAt state 1\n p1v1=mRT1\n");
float m=(p1*v1)/(287*T1);
printf("\nMass = %f\n",m);
printf("\nAt state 2\n p2v2=mRT2\n");
v2=(m*287*T2)/p2;
printf("v2= %f\n",v2);
float num=T2/T1;
double In=log(num);
float S=1.005*In;
printf("\nChange in entropy during process 1-2 = %f KJ/Kg.k\n",S);
float S1=m*S;
printf("\nFor given mass S=%f\n",S1);
v2=v3;
T3=T1;
float num1=(T3/T2);
double ln1=log(num1);
```

```
float S2=0.718*ln1;
printf("\nChange in entropy during process 2-3=%fKJ/kg.k\n",S2);
printf("\nFor given mass S2= %f\n",m*S2);
float S3=S2+S1;
printf("\nNet entropy change = %f KJ\n",S3);
float Q1=m*1.005*(T2-T1);
printf("\nHeat flow during process 1-2 \n = \%f KJ\n",Q1);
float Q2=m*0.718*(T3-T2);
printf("\nHeat flow during process 2-3 \n = %f KJ",Q2);
printf("\nNet heat flow = \%f KJ\n",Q1+Q2);
return 0;
}
2
#include<stdio.h>
#define pi 3.14
int main()
{
        float D,pin,tin,tout,vin;
printf("Enter Diameter in meter \n");
scanf("%f",&D);
printf("Enter pin in kpa\n");
scanf("%f",&pin);
printf("Enter velocity Vin in m/s\n");
scanf("%f",&vin);
printf("Enter Tin\n");
scanf("%f",&tin);
printf("Enter Tout\n");
scanf("%f",&tout);
```

```
float Vin=(pi*D*D*vin)/4;
printf("\nVin = \%f m3/s\n",Vin);
printf("\nBy using perfect gas relation\n pv=RT\n");
float rin=pin/(0.287*tin);
printf("rin = %f kg/m3\n",rin);
float mo=rin*Vin;
printf("mo= %f\n",mo);
printf("\nAt the outlet n mo(out)=mo(in)n");
printf("\nmout=min %f\n",mo);
float mout=mo;
float pout=pout/(0.287*tout);
float Vout1=mo*4;
float Vout2=(pi*D*D*pout);
float Vout=Vout1/Vout2;
printf("\nVout = %f m3/s\n",Vout);
float V0out=pi*D*D*Vout/4;
printf("v(out)= %f m3/s", V0out);
return 0;
}
```

```
Availibility:
#include<stdio.h>
#include<math.h>
int main()
  float Tw1,Tw2,To1,To2;
  float cpw=4.18,cpo=2.6;
printf("Enter temperature for Water:\n");
printf("Enter temperature Tw1 in kelvin\n");
scanf("%f",&Tw1);
printf("Enter temperature Tw2 in kelvin\n");
scanf("%f",&Tw2);
printf("Entr temperature for Oil:\n");
printf("Enter temperature To1 in kelvin\n");
scanf("%f",&To1);
printf("Enter temperature To2 in kelvin\n");
scanf("%f",&To2);
float Tw=Tw2-Tw1;
float To=To1-To2;
float Tatm=350;
printf("Using energy balance equation\n Mw.CPw(Tw2-Tw1)=Mo CPo(To1-To2)\n");
float Mw=(To*2.6*1)/(Tw*4.18);
printf("Mw = %f Kg/sec\n",Mw);
float T=Tw1/Tatm;
float T1=Tw1-Tatm;
float T2=Tatm*log(T);
float T3=T1-T2;
float AE=Mw*cpw*T3;
printf("\nA.E of water before heat exchange = %f kg/sec\n",AE);
float T21=Tw2/Tatm,t1=Tw2-Tatm,t2=Tatm*log(T21);
float t3=t1-t2;
```

```
float AE2=Mw*cpw*t3;

printf("\nA.E of water After heat exchange = %f kg/sec\n",AE2);

float to=To1-Tatm,j2=To1/Tatm,t=Tatm*log(j2);

float AEo=cpo*(to-t);

printf("\nA.E of oil before heat exchange = %f kJ/sec\n",AEo);

float t5=To2-Tatm,j23=To2/Tatm,t12=Tatm*log(j23);

float AE1=cpo*(t5-t12);

printf("\nA.E of oil After heat exchange = %f kJ/sec\n",AE1);

float A=AE+AEo;

printf("\nTotal A.E before heat exchange = %f kJ/sec\n",A);

float A1=AE2+AE1;

printf("\nTotal A.E After heat exchange = %f kJ/sec\n",A1);

printf("\nDecrease in A.E = %f kj/sec\n",A-A1);

return 0;

}
```

# ** 3	1. If refrigerator is places iside the well insulated room with open door, thn what is its effect on room air temperature?
1 41	A. Increses B. Decreases C. Remains same D. None of these
	2. The forms of energy are those a system possesses as a whole with respect to some outside reference frame A. macroscopic B. microscopic
	3. The forms of energy are those related to the molecular structure of a system and the degree of the molecular activity A. macroscopic B. microscopic
	4. The sum of all the microscopic forms of energy is called the of a system. A. kinetic energy B. potential energy C. internal energy D. None of these
	5. A large exhaust fan in a lab room keeps the pressure inside at 10 cm water relative vacuum to the hallway? What is the net force acting on the door measuring 1.9 m by 1.1 m? A. 2020 N B. 2030 N C. 2040 N D. 2050 N
	6. A 5 m long vertical tube having cross sectional area 200 cm ² is placed in a water. It is filled with 15°C water, with the bottom closed and the top open to 100 kPa atmosphere. How much water is present in tube? A. 99.9 kg B. 109.9 kg C. 89.9 kg D. 79.9 kg
	7. Work done by a system is taken to be A. positive B. negative C. zero D. varies according to situation
	8. Work done on a system is taken to be A. positive B. negative C. zero D. varies according to situation
	9. The specific energy, e=E/m is an extensive property.A. true B. false
	10. (m*g*z) gives the A. macroscopic kinetic energy C. macroscopic potential energy D. microscopic potential energy
x	11. In a constant volume process, internal energy change is equal to A. heat transferred B. work done C. zero D. none of the mentioned
	12. The enthalpy and internal energy are the function of temperature for A. all gases B. steam C. water D. ideal gas

13. A system undergoing change in state from A to B along path 'X' receives 100 J heat and does 40 J work. It returns to state A from B along path 'Y' with work input of 30 J. Calculate the heat transfer involved along the path 'Y'.

A. -60 J B. 60 J C. -90 J D. 90 J

- 14. The portion of the internal energy of a system associated with the kinetic energies of the molecules is called the
- A. Sensible energy B. macroscopic kinetic energy C. macroscopic potential energy D. microscopic potential energy
- 15. The internal energy associated with the phase of a system is called the
- A. latent energy B. macroscopic kinetic energy C. macroscopic potential energy D. microscopic potential energy
- 16. The tremendous amount of energy associated with the strong bonds within the nucleus of the atom itself is called
- A. nuclear energy B. macroscopic kinetic energy C. macroscopic potential energy D. microscopic potential energy
- 18. In adiabatic process heat transfer is
- A. zero B. positive C. negative D. none of the mentioned
- 19. The specific gravity of a liquid has
- A. the same unit as that of mass density B. the s
 - B. the same unit as that of weight density
- C. the same unit as that of specific volume
- D. no unit
- 20. In which type of matter, one won't find a free surface?
- A. Solid B. Liquid C. Gas D. Fluid

First Law of Thermodynamics

Problem 1

3. Carbon dioxide passing through a heat exchanger at a rate of 50 kg/hr is to be cooled down from 800° C to 50° C. Determine the rate of heat removal assuming flow of gas to be of steady and constant pressure type. Take $c_p = 1.08$ kJ/kg K.

Problem 2

10. In a cinema hall with seating capacity of 500 persons the comfort conditions are created by circulating hot water through pipes in winter season. Hot water enters the pipe with enthalpy of 80 kcal/kg and leaves the pipe with enthalpy of 45 kcal/kg. The difference in elevation of inlet pipe and exit pipe is 10 m with exit pipe being higher than inlet pipe. Heat requirement per person is 50 kcal/hr. Estimate the quantity of water circulated per minute, neglecting changes in velocity.

Problem 3

In a steady flow system, a substance flows at a rate of 5 kg/sec. It enters the system at 6 bar, velocity sooms internal energy 2000 ks/kg and sp. volume 0.38 m³/kg.

It leaves the system at a pressure of 1.5 bar, velocity

150 m)s, internal energy 1600 ks/kg and sp. volume of

1.26 m³/kg. During its passage through the system.

The substance losses 90 ks/kg of heat to the surroundings.

Determine the power of the system, stating whether it is

From or to the system. Neglect any changes in PE.

Problem 4

of fluid. The sp. volume of the fluid, pressure and velocity at the inlet are 0.37 m³/kg, 600 kPa and 16 m/s resp. The Inlet is 32m above floor level. The discharge is at floor level. The discharge conditions are 0.62 m³/kg, 100 kPa and 270 m/s. The total heat loss between inlet and outlet is 9 kI/kg of the fluid. In flowing apparatus, does the sp. infernal energy increase or decrease and by how much?

Problem 5

k In a steady flow device the inlet and outlet conditions are given below. Determine the heat loss/gain by the system.

Property	Inlet	ownet
Pressure (bar)	10	8.93
sp. enthalpy (Kilkg)	2827	2341
velocity (m)s)	20	120
Elevation (m)	3.2	0.5

Fluid flow rate through the device is 2.1 kg/s. The work output of the device is 750 kW.

Problem 6

At the inlet to a convergent-divergent nozele the enthalpy of the fluid passing is 3000 kJ/kg and the velocity is 60 m/s. At the discharge end. The enthalpy is 2757 kJ/kg. The nozele is hosizontal and the heat loss during the flow is negligible. Find @ velocity of the fluid at the exit of the nozele, @ if the inlet area is 0.1 m² and the sp. volume at the inlet is 0.187 m³/kg find the mass flow rate of the fluid, and @ if the sp. volume at the outlet is 0.498 m³/kg find the area at the exit of the nozele.

Problem 7

Air flows steadily at the rate of 0.5 kg/s through an air compressor, entering at 7 m/s velocity, 100 kPa pressure and 0.95 m³/kg sp. volume and leaving at 5 m/s, 700 kPa and 0.19 m³/kg, respectively. The internal energy of the air leaving is 90 ks/kg greater than that of air entering. cooling water in the compressor jackets absorbs heal from the air at the rate of \$\frac{158}{25}\$ kw. Compute a the power input to the compressor, and b ratio of inlet pipe diameter to the outlet pipe diameter.

Problem 8

Determine the power available from a steam turbine with following details; Steam flow rate = 1 kg/s
Velocity at inlet and exit = 100 m/s and 150 m/s
Enthalpy at inlet and exit = 2900 kJ/kg, 1600 kJ/kg
Change in potential energy may be assumed negligible.

[1293.75 kW]

Problem 9

5–8 A hair dryer is basically a duct of constant diameter in which a few layers of electric resistors are placed. A small fan pulls the air in and forces it through the resistors where it is heated. If the density of air is 1.20 kg/m³ at the inlet and 1.05 kg/m³ at the exit, determine the percent increase in the velocity of air as it flows through the dryer.

Problem 10

5-15 Air enters a 28-cm diameter pipe steadily at 200 kPa and 20°C with a velocity of 5 m/s. Air is heated as it flows, and leaves the pipe at 180 kPa and 40°C. Determine (a) the volume flow rate of air at the inlet, (b) the mass flow rate of air, and (c) the velocity and volume flow rate at the exit.

FIGURE P5-15

Problem 11

5-30 Air enters an adiabatic nozzle steadily at 300 kPa, 200°C, and 30 m/s and leaves at 100 kPa and 180 m/s. The inlet area of the nozzle is 80 cm². Determine (a) the mass flow rate through the nozzle, (b) the exit temperature of the air, and (c) the exit area of the nozzle. Answers: (a) 0.5304 kg/s, (b) 184.6°C, (c) 38.7 cm²

FIGURE P5-30

Problem 12

5-32 Steam at 5 MPa and 400°C enters a nozzle steadily with a velocity of 80 m/s, and it leaves at 2 MPa and 300°C. The inlet area of the nozzle is 50 cm², and heat is being lost at a rate of 120 kJ/s. Determine (a) the mass flow rate of the steam, (b) the exit velocity of the steam, and (c) the exit area of the nozzle.

Problem 13

5-39 Refrigerant-134a at 700 kPa and 120°C enters an adiabatic nozzle steadily with a velocity of 20 m/s and leaves at 400 kPa and 30°C. Determine (a) the exit velocity and (b) the ratio of the inlet to exit area A₁/A₂.

Problem 14

5-44 Steam enters a nozzle at 400°C and 800 kPa with a velocity of 10 m/s, and leaves at 300°C and 200 kPa while losing heat at a rate of 25 kW. For an inlet area of 800 cm², determine the velocity and the volume flow rate of the steam at the nozzle exit. Answers: 606 m/s, 2.74 m²/s

FIGURE P5-44

Problem 15

5-60 Helium is to be compressed from 120 kPa and 310 K to 700 kPa and 430 K. A heat loss of 20 kJ/kg occurs during the compression process. Neglecting kinetic energy changes, determine the power input required for a mass flow rate of 90 kg/min.

FIGURE P5-60

Problem 16

5-61 Carbon dioxide enters an adiabatic compressor at 100 kPa and 300 K at a rate of 0.5 kg/s and leaves at 600 kPa and 450 K. Neglecting kinetic energy changes, determine (a) the volume flow rate of the carbon dioxide at the compressor inlet and (b) the power input to the compressor.

Answers: (a) 0.28 m³/s, (b) 68.8 kW

Availability

Problem 1

Calculate the decrease in available energy when 20kg of water at 90° C mixes with 30kg of water at 30° C, the pressure being taken as constant and the temperature of surroundings being 10° C. Take Cp of water as 4.18 kJ/kg.K

Problem 2

In a parallel flow type heat exchanger, water enters at 50° C and leaves at 70° C while oil (specific gravity =0.82 and specific heat 2.6 kJ/kg.K) enters at 240° C and leaves at 90° C. If the surrounding temperature is 27° C determine the loss in availability on the basis of one kg of oil per second.

Problem 3

1 kg of ice at 0° C is mixed with 10 kg of water at 30° C. Determine the net increase in the entropy and unavailable energy when the system reaches common temperature. Assume that surrounding temperature is 10° C. Take specific heat of water as 4.18 kJ/kg.K, specific heat of ice as 2.1 kJ/kg.K and latent heat of fusion as 333.5 kJ/kg.

Problem 4

1 kg of ice at 0° C is mixed with 12 kg of water at 27° C. Assuming surrounding temperature as 15° C. Calculate the net increase in entropy and unavailable energy when the system reaches common temperature. Take specific heat of water as 4.18 kJ/kg.K, specific heat of ice as 2.1 kJ/kg.K and latent heat of fusion as 333.5 kJ/kg.

Problem 5

In a heat exchanger of parallel flow type, water enters at 60° C and leaves at 80° C while oil of specific gravity 0.8 enters at 250° C and leaves at 100° C. The specific heat of oil is 2.5 kJ/kg.K and surrounding temperature is 300K. Determine the loss in availability on the basis of 1 kg of oil flow per second.

Problem 6

1 kg of ice at -5° C is mixed with 15 kg of water at 30° C. Assuming surrounding temperature as 18° C. Calculate the net increase in entropy and unavailable energy when the system reaches common temperature. Take specific heat of water as 4.18 kJ/kg.K, specific heat of ice as 2.1 kJ/kg.K and latent heat of fusion as 333.5 kJ/kg.

Problem 7

In a heat exchanger of parallel flow type, water enters at 30° C and leaves at 60° C while oil of specific gravity 0.8 enters at 235° C and leaves at 115° C. The specific heat of oil is 2.6 kJ/kg.K and surrounding temperature is 305K. Determine the loss in availability on the basis of 1 kg of oil flow per second.

Problem 8

Calculate the decrease in available energy when 30kg of water at 85° C mixes with 25kg of water at 28° C, the pressure being taken as constant and the temperature of surroundings being 10° C. Take Cp of water as 4.18 kJ/kg.K

Problem 9

In a parallel flow heat exchanger hot fluid enters at 180°C and leaves at 120°C while the cold fluid enters at 55°C. The specific heats of hot and cold fluids are 1.8 kJ/kg.K and 2.3 kJ/kg.K respectively. The mass flow rate of hot fluid is 2.8 kg/min and that of cold fluid is 3.5 kg/min. Calculate the exit temperature of cold fluid. Calculate the decrease in available energy for ambient temperature of 15°C and the rate of heat transfer.

Problem 10

8–137 An adiabatic heat exchanger is to cool ethylene glycol $(c_p = 2.56 \text{ kJ/kg} \cdot ^{\circ}\text{C})$ flowing at a rate of 2 kg/s from 80 to 40°C by water $(c_p = 4.18 \text{ kJ/kg} \cdot ^{\circ}\text{C})$ that enters at 20°C and leaves at 55°C. Determine (a) the rate of heat transfer and (b) the rate of exergy destruction in the heat exchanger.

Problem 11

8–136 A well-insulated heat exchanger is to heat water $(c_p = 4.18 \text{ kJ/kg} \cdot ^{\circ}\text{C})$ from 25°C to 60°C at a rate of 0.4 kg/s. The heating is to be accomplished by geothermal water $(c_p = 4.31 \text{ kJ/kg} \cdot ^{\circ}\text{C})$ available at 140°C at a mass flow rate of 0.3 kg/s. The inner tube is thin-walled and has a diameter of 0.6 cm. Determine (a) the rate of heat transfer and (b) the rate of exergy destruction in the heat exchanger.

FIGURE P8-136

Problem 12

8–88 Cold water ($c_p = 4.18$ kJ/kg·°C) leading to a shower enters a well-insulated, thin-walled, double-pipe, counter-flow heat exchanger at 15°C at a rate of 0.25 kg/s and is heated to 45°C by hot water ($c_p = 4.19$ kJ/kg·°C) that enters at 100°C at a rate of 3 kg/s. Determine (a) the rate of heat transfer and (b) the rate of exergy destruction in the heat exchanger. Take $T_0 = 25$ °C.

FIGURE P8-88

Problem 13

A heat exchanger is used to cool 2200 kg/hr of oil (c_p =2.5 kJ/kgK), from 100°C to 35°C by the use of water entering at 17°C and leaving at 85°C. Calculate the required quantity of water, the decrease in available energy for ambient temperature of 20°C and the rate of heat transfer.

Problem 14

A home air-conditioning system uses a heat exchanger to cool 0.8 kg/s of air from 45°C to 15°C. The cooling is accomplished by a stream of cooling water that enters the system with 0.5 kg/s flow rate

and 8°C temperature. Calculate exit temperature of water, rate of heat transfer and decrease in availability for an ambient temperature of 20°C.

Problem 15

A heat exchanger is used for cooling oil from 200°C to 140°C by using water available at 20°C. The mass flow and specific heat of oil are 10000 kg/hr and 1.9 kJ/kg K and the mass flow and specific heat of water are 3000kg/hr. and 4.187 kJ/kg K. Calculate outlet temperature of water, rate of heat transfer and the decrease in available energy for an ambient temperature of 25°C.

Problem 16

A heat exchanger is used to heat water from 20°C to 80°C using a hot oil at 120°C (c_p =2.5 kJ/kgK). The mass flow rate of water is 1.8 kg/min. Calculate the required quantity of oil, the decrease in available energy for ambient temperature of 25°C and the rate of heat transfer.

Entropy

Problem 1

7–124 A well-insulated heat exchanger is to heat water $(c_p = 4.18 \text{ kJ/kg} \cdot ^{\circ}\text{C})$ from 25 to 60°C at a rate of 0.50 kg/s. The heating is to be accomplished by geothermal water $(c_p = 4.31 \text{ kJ/kg} \cdot ^{\circ}\text{C})$ available at 140°C at a mass flow rate of 0.75 kg/s. Determine (a) the rate of heat transfer and (b) the rate of entropy generation in the heat exchanger.

FIGURE P7-124

Problem 2

Air at 20°C and 1.05 bar occupies 0.025 m3. The air 15 heated at constant volume until the pressure is 4.5 bar, and then cooled at constant pressure back to original temperature. Calculate:

1) The net heat flow from the air

11) The net entropy change

Problem 3

- A 0.04 m³ of nitrogen contained in a cylinder behind a piston is initially at 1.05 bax and 15°C. The gas is compressed iso thermally and reversibly until the pressure is 4.8 bas, Calculate:
 - i) The change of entropy
 - ii) The head flow
 - Assume nitrogen to act as a perfect gas. Molecular weight of nitrogen = 28.

Problem 4

* 0.04 kg of Carbon dioxide (molecular weight = 44) is compressed from 1 bar, 20°C until the pressure is 9 bar, and the volume is then 0.003 m³ calculate the change of entropy.

Take Cp for (02 as 0.88 kJkg k and assume (02 to be a perfect gas.

Problem 5

* 1 m³ of air is heated reversibly at constant pressure from 15°C to 300°C, and is then cooled reversibly at constant volume back to the initial temperature. The initial pressure is 1.03 bar. Calculate the net heat flow and overall change of entropy.

Problem 6

Air at 15° C and 1.05 bar occupies 0.02 m^{3.} The air is heated at constant volume until the pressure is 4.2 bar and then cooled at constant pressure back to the original temperature. Calculate the net heat flow to or from the air and the net entropy change.

Problem 7

0.05 kg of carbon dioxide (molecular weight = 44) is compressed from 1 bar, 15° C, until the pressure is 8.3 bar, and the volume is then 0.004m^3 . Calculate the change of entropy. Take Cp for carbon dioxide as 0.88 kJ/kg.K and assume carbon dioxide to be a perfect gas.

Problem 8

 $1.2 \, \text{m}^3$ of air is heated reversibly at constant pressure from 300K to 600K, and is then cooled reversibly at constant volume back to initial temperature. If the initial pressure is 1 bar, calculate: the net heat flow and the overall change in entropy. Take Cp for air as $1.005 \, \text{kJ/kg.K}$ and $R = 0.287 \, \text{kJ/kg.K}$.

Problem 9

Air at 25°C and 1.05 bar occupies 0.018 m³. The air is heated at constant volume until the pressure is 4.5 bar and then cooled at constant pressure back to the original temperature. Calculate the net heat flow to or from the air and the net entropy change.

Problem 10

 $0.85~\text{m}^3$ of air is heated reversibly at constant pressure from 320K to 580K, and is then cooled reversibly at constant volume back to initial temperature. If the initial pressure is 1.1 bar, calculate: the net heat flow and the overall change in entropy. Take Cp for air as 1.005 kJ/kg.K and R = 0.287 kJ/kg.K.

Theemodynamics ISE-2, GEOUP NOI - 3

Air is heated as it Flows, and leaves the pipe at 180 kpa and 40°c, Determine (a) the volume flow Eate of ais at the inlet, (b) the mass flow Eate of cire, and (c) the velocity and volume flow Eate at the orit.

Folution: Aie, D: (28)cm: 0.28m pin: 200 kpa Tin: 20°c + 273:293k Vin: 5 m/3

pout = 180 cpa, Tout = 40°c+ 273 = 313 k

Me veeq to tivq viv= s vom = s

Aom = s vom = s

Aom = s vom = s

 $Yin = \pi (0.28)^2 (5) = 0.3079 \text{ m3/s}$

m°= gin. v°in
by using peefed gas telation

8in - Pin (200) RTin (0.287)(293) (0.287)(293)

Deta

 $\frac{m^{\circ}}{100}$: $(2.378 \text{ kg/m}^{3})(0.3079)$: 0.7323 kg

mod : min: 0.7323 kg/s

mood - gout vout . A

Vout = <u>m°out</u> : <u>am°</u> gout A np² fout

Pout = Pout (0.287) (313) = 2.004 kg/m3

Vout: 4 (0.7323) = 5.934 m/s

Vood: Yout. A = 1/4 D2 You

Yout = 4 (0.28) 2 (5.934) 5 0.3654 m3/s

Camlin

Enteopy

Im3 of als is healed Ecretibly at constant and pressure from 15°c to 300°C, and is then cooled reversibly at constant volume back to the initial temperature, The initial pressure is 1.03 bar. calculate the net heat flow and overall change of entropy.

Given dala,

solution:-

0 = 1m3 constant, N2 = 71 = 15°C = 288k PEESSURE 12:573k

P1= 1.03 x 105 NIM2 P2 = P1= 1-03 x 105 NIM

constant p3=72:0

T3=71=288K volume

p3=0

Al Stade(1)

PINI= MRTI

1.03 X105 X1 = MX287 X 288

m: 1.2461 kg

at state 2

P2 V2: MRT2

1.03 x 105 x y2: 1.2461 x 287 x 573

V2= 1-9895 mg

change in enteopy during process 1-2,

 $\Delta 51-2 = cp. ln(\frac{12}{11}) : 1.005 \times ln = (\frac{573}{282})$

13: 0.6913 kg/kg:k

toe given mass, As1-2: 0.6913 x1.2461 : 0.8619 1911 V2: 18: 1.9 895 m3 change in enteopy during process 2-3 As=3: CD.10(13). 0.718 10(288) 152-3: -0.493 kg/kg/k Fot given mass, 1.296k - 0.493 1523: -0.6143 KJIK Nel enterpy change DS1-3: 0.8614-0.6143 = 0.2471 K1 Head flow during process 1-2 (ap:0) Q1-2=m.cp (T2-T1) · 1.2461 x 1.005 x (573-288) 91-23 356.91 kg (Heat-gain) Heat slow during process 2-3 (22-3)

Q2-3- m. Cv. (73-T2) . 1.2461x 0.718(288 - 573) - 254.99 ks (head Eejection) : Nel head flow, 01-3: 356.91-234.99: 101-92 KJ

Camlin.

Availibility

In an heat exchanges of pasalled flow-types weter enters at 30°C and leaves at 60°C while oil of specific gravity 0.8 enters at 285°C and leaves at 115°C. The specific heat of oil is 2°C kJ/kg k. and sussounding 350k. Determine the loss in availibility on the basis of 1 kg of oil flow per second

→ for water

Twl= 50°C Tw2= 60°C

= 30+273 = 60+273

= 303 k = 333 k

Cpw= 4.18 kg/kgk mw=?

foe oil

701: 235°c : 508k To2: 115° = 388k

Cpo: 2.6 kJ/kg·k mo: 1kg/sec

Jatm: 350k

Using energy balance equation

mw. Cpw(Tw2-Tw1) = mocpo (To1-to2)

mw 4.18(333-303) = 1 x 2.6 x (235-388)

mw = + 2.756 rg/sec

A.E of water before head exchanger

 $(A \cdot G)_{W1} = 2.756 \times 418 \left[(303-350) - 350 \ln(303) \right]$ $= 11.520 \times \left[(303-350) - 350 \ln(303) \right]$ $= 3.470 \times 11.520$ = 39.974 ky/sec

P	ope:					
+41			*			
D	11	IF	,	:		

Camlin

A.E of water after head exchanges (AE) = 2.756 x4.18 [(333-350) - 350/0 (333) = 11.520 x 0.426 = 4.907 ETISEC A.F of oil befose head exchange $(Af)_{01}$: $1 \times 2.6 \left[(235-350) - 350 10 \left(\frac{235}{350} \right) \right]$ A.f of Oil After head enchanger, $(AE)_{02} = 1 \times 2.6 \left(388 - 350 \right) - 350 10 \left(\frac{388}{350} \right)$ = 5.004 H/sec 2 Joial AE before head enchanges: (AE) + (AE) = 39.974 + 63 = 75.974 KJISEC 70tal AE, After = (AE) w2 + (AE) 02 = 4-907 + heat eachanges Deceease in A.E = 75.974-9.911 = 66.063 K1/sec

Enro	oll. N	K. E. Society's Rajarambapu Institute of Technology, Rajaramnagar (An Autonomous Institute, affiliated to SUK) End Semester Examination (Nel 2023)	QPN	
	Da	S.Y. B. Tech. Mechanical Engineering SEM-III / I Engineering Thermodynamics (ME2033) ME203 ay & Date: — Thu., 13 17/2023	32)	
	Ti		Iax Marks	: 100
Instr	uctio	ns: 1. All questions are compulsory. 2. Use of non-programmable calculator is allowed. 3. Assume suitable data if necessary 4. Use of steam table allowed		
Q.1	a)	Explain mechanical, chemical and thermal equilibrium.	Marks 08	CO1
	a)	OR		
	a)	Develop the steady flow energy equation for heat exchanger applications.		COI
	b)	A blower handles 1 kg/s of air at 20°C and consumes a power of 15 kW. The inlet and outlet velocities of air are 100 m/s and 150 m/s respectively. Find the exit air temperature, assuming adiabatic conditions. Take C _p of air is 1.005 kJ/kg-K.	07	COI
Q.2	a)	Show that the efficiency of all reversible heat engines operating between the same temperature levels is the same. OR	08	CO2
	a)	Explain Clausius inequality.		
	b)	A 50-kg block of iron casting at 500 K is thrown into a large lake		CO2
		that is at a temperature of 285 K. The iron block eventually reaches thermal equilibrium with the lake water. Assuming an average specific heat of 0.45 kJ/kg·K for the iron, determine (a) the entropy change of the iron block, (b) the entropy change of the lake water, and (c) the entropy generated during this process.	07	COI
Q.3	a)	Explain in detail available and unavailable energy. OR	08	CO3
	a)	Derive the equation for availability (Exergy) of a open system.		
	b)	In a parallel flow type heat exchanger, water enters at 50°C and leaves at 70°C while oil (specific gravity =0.82 and specific heat 2.6		CO3
		kJ/kg.K) enters at 240°C and leaves at 90°C. If the surrounding	07	CO3
		ESE_ME2033	Page 1 of	2

		temperature is 27°C, Calculate the loss in availability based on one kg of oil per second.		
Q.4	a)	Explain Daltons law of partial pressure and Amagat's law.	08	CO5
	a)	OR Develop equation for enthalpy of a gas mixture on mass and molar basis using Gibbs-Daltons law.		CO5
	b)	Consider a gas mixture that consists of 5 kg of O ₂ , 8 kg of N ₂ and 12 kg of CH ₄ . Calculate, a) mass fraction of each component, b) mole fraction of each component, c) the average molar mass and, d) the gas constant of the mixture	07	CO5
Q.5	a)	The steam is produced in the boiler and supplied to the steam turbine at 36 bar and 370°C to generate power in the power plant. Calculate the enthalpy and entropy of the steam at inlet per kg of steam.	08	CO4
	b)	A rigid tank contains 10 kg of water at 90°C. If 8 kg of the water is in the liquid form and the rest is in the vapor form, determine (i) the pressure in the tank and (ii) the volume of the tank.	08	CO4
	c)	Explain PVT surfaces OR	04	CO4
	c)	Explain critical temperature and critical pressure for steam.		
				CO4
Q.6	a)	Develop the equation for efficiency of the Rankine cycle.	08	CO6
	b)	A steam enters in a turbine at 30 bar and 300° C and it expands isentropically up to 0.1 bar pressure in condenser. Determine the cycle efficiency, work ratio and specific steam consumption.	08	CO6
	c)	Write any one method to improve Rankine cycle efficiency OR	04	CO6
	c)	Write limitations of Carnot cycle.		CO6

En	roll.	Rajarambapu Institute of Technology, Rajaramnagar	QP N	0.
		(An Autonomous Institute, affiliated to SUK) End Semester Examination March 2022 S.Y. B. Tech. Mechanical Engineering SEMESTER – III	EB21	
	Da	Engineering Thermodynamics (ME2033) y & Date: 5 at 12 3 2 2 2	/ Re. Reg	-ME2032
	Tin	ne: - 09:30 to 5:30 pm	Max Marks:	100
Instr	uction	1. All questions are compulsory. 2. Use of non-programmable calculator is allowed. 3. Assume suitable data if necessary 4. Use of steam table allowed		
			Marks	CO
Q.1	a)	Explain Extensive and Intensive property with suitable examples OR	08	COI
	a)	Apply steady flow energy equation to develop equation for exvelocity of gas leaving the nozzle.	sit	
	b)	Calculate the power available from a steam turbine with following details: Steam flow rate 1 kg/s Velocity of steam at inlet and exit 100 m/s and 150 m/s Enthalpy of steam at inlet and outlet 2900 kJ/kg and 1600 kJ/kg Change in potential energy is negligible	ng 07	CO1
Q.2	a)	Differentiate between heat pump and refrigerator. OR	08	COI
	a)	Explain the Clausius theorem		
	b)	1 m ³ of air is heated reversibly at constant pressure from 15°C to 300°C, and is then cooled reversibly at constant volume back to the initial temperature. The initial pressure is 1.03 bar. Calculate the notation of the cooled reversibly at constant volume back to the initial temperature.	e	CO2
2.3	a)	heat flow and overall change of entropy. Derive the equation for availability (Exergy) of a finite body a	at 08	CO3
		temperature T. OR		
	a)	Derive the equation for availability (Exergy) of a steady flow process	S	
	b)	Calculate the decrease in exergy when 25 kg of water at 95°C mix wit 35 kg of water at 35°C, the pressure being taken as constant and th temperature of the corresponding being 15°C. Cp of water is 4.8 kJ/kgK.	e	CO3

Page 1 of 2

Q.4	a)					quatio	n for internal	energy of a	08	CO:
		gas mix	ture on n	nass and r	nolar basis. OR					
	a)	1.	the follo Mole frac Dalton's	ction	3. Mas 4. Am					
	b)	kg of C fraction	H ₄ . Calc	ulate, a) componer	mass fractio	on of e	of O ₂ , 8 kg of cach components of the components of the components of the cache o	ent, b) mole	07	COS
Q.5	a)		te the mi	ssing pro	perties of s	team i	n the followi	ng table for	08	CO4
		water:								
		S. N.	T, °C	P, bar	h, kJ/kg	x	s, kJ/kg.K	Type of steam		
		1.		80	2700					
		2.	400	90	Y					
		3.		0.4		0.8				
		4.	40			0.9				
	b)	at 31 ba	er and 42	0°C to ge	nerate power	er in th	plied to the state power plants to the perkg of ste	it. Calculate	08	CO4
	c)	Draw P-	-v and T-	v diagram	for water a	ınd lab	el it.		04	CO4
	c)	Write va	an der W	aals equat	ion of state	and m	eaning of terr	ns in it.		
Q.6	a)						nkine cycle.		08	CO6
	b)	initial co	ondition	of steam	being dry sa	iturated	ssure 18 and d. Calculate:		08	CO6

ESE_ME2033

c) State process of Otto cycle and draw PV diagram
 OR
 c) Draw Carnot vapour cycle on P-V, T-S diagrams.

04

CO6

Re Eram - Oct 2022 Model Answer sheet.

Q.1. a) i) Explanation with definition tig, of each term of Example tack

Of Mark * 8 = 68 mortes

ii) Dehnotion -60 * 04 term = 08 Mayer
fig. Example (0) * 04 term = 08 Mayer

(ansing Stolement - 62M)

OR

Explanations with tig -62m

9.1. D Given,

m=42kg15, h=313193k51kg, h=2676k51kg,

h=429k51kg

How by applying may balance principle

m,+m=m3.

by applying energy balance principle.

m,h,+m2h2=m3h3

4.2x31393+m2h2676 = (4.2+m2)41g

m==0.196k915

The steam supplied is 0.196k915 for

heating.

PMMO & O difference Q.2 @ 08 difference point & DM each = 08 Marks OR Clausius Inenally Statement - (02M) figure - (02 m) Proof Jegnotion - (DLM) D VICISMB, PIEPZ, TIE BET273 K= 298K Pi= Hobor : Cp= 1:005 K3 (tale), R= 0.287 M3/1/21. Ta= 830+273= 8034 (1) was at air = 6/1 1.02/102/1.2 = 2 kg 1.8415 kg 02 0121023 = malciones + marcio-cos) EMCTOTI)CG-CV) = MXCTO-TI)XR =1.04x (603-298) × 0.287= 161+3 Entropy charge during Process 1.2. 32-1=1.84× 1.005× Ln (603) 2130KJ/k. Entropy change during process 23 33-92= mcv Ln(T3) ~ 18x4x 0718x1n(398 ". overall change in entropy c (S2-51) A (S3-52)

= 1.36-C-0.9311) = 22311 Kolk. (8.3 a) Excusy destruction in AT Arocen Rqure (021M) Explanation - (04M) Finel equation - 62M OR (3) Exergy & closed gram figure 62 M Soplanton - (02M) Rived Eghation - O2M D Eiven. TI= 235°C= 508K, T2015°C2 B881c TO= 305 K Initial availability= P. = (hi-ho) - To(Si-So) = CPCTITO) - TO CPLOCTIO = 2.6 (2082 305) - 305×2.6×10 (508) 2123.23 FIley - (3m) Mas CPLTOND -TOCP INLTED = 5.8(388-302) - 302 x 5.6x TU (388) = 24.93 KD/kg - 2M) Hence 1012 (n availability of all 13 = 41-42

= 98.3 KJ1kg ___ (2M)

- 123-23-24.93

Q-4 @ Debrotong tem - 61M * 04 tem = (08M)
Explanation - (01M) OR (a) Statement & law - 62M Explanations with fig - (02M) * 02 terms = (08M) composition on mole basis. 6540 02, & 3540 CH4 Honce, molar mass mmo Zyimi = 0.69x 82+035x16 = 26.4 kg/kmo) - (IM) Gas Constort Rm Z Ru 8.314 0.3149 KJ/kgk some for 654.02 and 357. Nr Mm = 0.65 x3 2+ 0.35 x 28 = 30.6 kg/kmo)

and Rm = RU = 8.314 0.2716 Kolty E mm = 30.6 = -6m B.5 (a) Defail Calculation of michig terms each

(b) 50 marks.

(c) 1058 Superhal

(d) 1058 Superhal

(e) 400 90 3118.8

(e) 400 90 3118.8

(e) 2876 Superhal

(f) 50 0.1235 1877 0.7 5.863 West

Given
P=30.5 bar
T=330°C
h=3067.2 FJ/kg - 6m
S=6.6580 FJ/kg/ mm

Orabe Régure (01 M)
Nature of line (01 M)

OR

Mollier chagran
hg-61m
ling-62m
Explanton -61m

NOTICE

For S. Y. B. Tech Mechanical

All S. Y. B. Tech Mechanical students are hereby informed that an industrial visit for the course Engineering Thermodynamics is arranged at Rajarambapu Sugar Factory, Wategaon (Unit=02) as per following details:

Location:

Rajarambapu Sahakari Sakhar Karkhana Ltd

Wategaon Unit No: 02

Visit Schedule:-

Day &Date	Division	Time (Batch of Students)
Friday, 25th Oct. 2022	В	9.30 AM Onwards
	A	02.00 PM Onwards

Kindly Note:

- 1. For SY Mech Div A classes will be conducted as per time table upto 12.10 pm and then visit will start.
- 2. For S Y Mech Div B after visit classes will be conducted from 3.10 pm onwards as per timetable.
- 3. All student should come in dress code for visit
- 4. Shoes are compulsory.

Course coordinator

Head,

Mech Engg. Dept.

This content is neither created nor endorsed by Google Report Abuse - Terms of Service - Privacy Policy

This content is neither created nor endorsed by Google. Report Abuse - Terms of Service - Privacy Policy

This content is neither created nor endorsed by Google. Report Abuse - Terms of Service - Privacy Policy

This content is neither created nor endorsed by Google. Report Abuse - Terros of Service - Privacy Policy

Basic Concepts of Thermodynamics

Every science has its own unique vocabulary associated with it. Precise definition of basic concepts forms a sound foundation for development of a science and prevents possible misunderstandings. Careful study of these concepts is essential for a good understanding of topics in thermodynamics.

Thermodynamics and Energy

Thermodynamics can be defined as the study of energy, energy transformations and its relation to matter. The analysis of thermal systems is achieved through the application of the governing conservation equations, namely *Conservation of Mass, Conservation of Energy* (1st law of thermodynamics), the 2nd law of thermodynamics and the property relations. Energy can be viewed as the ability to cause changes.

<u>First law of thermodynamics</u>: one of the most fundamental laws of nature is the conservation of energy principle. It simply states that during an interaction, energy can change from one form to another but the total amount of energy remains constant.

<u>Second law of thermodynamics:</u> energy has quality as well as quantity, and actual processes occur in the direction of decreasing quality of energy.

Whenever there is an interaction between energy and matter, thermodynamics is involved. Some examples include heating and air-conditioning systems, refrigerators, water heaters, etc.

Example 1: Unit Conversion

The heat dissipation rate density of an electronic device is reported as 10.72 mW/mm² by the manufacturer. Convert this to W/m².

$$10.72 \frac{mW}{mm^2} \times \left(\frac{1000mm}{1m}\right)^2 \times \frac{1W}{1000mW} = 10720 \frac{W}{m^2}$$

Closed and Open Systems

A *system* is defined as a quantity of matter or a region in space chosen for study. The mass or region outside the system is called the *surroundings*.

Fig. 1: System, surroundings, and boundary

<u>Boundary</u>: the real or imaginary surface that separates the system from its surroundings. The boundaries of a system can be fixed or movable. Mathematically, the boundary has zero thickness, no mass, and no volume.

<u>Closed system or control mass</u>: consists of a fixed amount of mass, and no mass can cross its boundary. But, energy in the form of heat or work, can cross the boundary, and the volume of a closed system does not have to be fixed.

<u>Open system or control volume</u>: is a properly selected region in space. It usually encloses a device that involves mass flow such as a compressor. Both mass and energy can cross the boundary of a control volume.

<u>Important note</u>: some thermodynamics relations that are applicable to closed and open systems are different. Thus, it is extremely important to recognize the type of system we have before start analyzing it.

<u>Isolated system</u>: A closed system that does not communicate with the surroundings by any means.

Rigid system: A closed system that communicates with the surroundings by heat only.

Adiabatic system: A closed or open system that does not exchange energy with the surroundings by heat.

Fig. 2: Closed system, mass cannot cross the boundaries, but energy can.

Fig. 3: Control volume, both mass and energy can cross the boundaries.

Energy

In thermodynamics, we deal with change of the total energy only. Thus, the total energy of a system can be assigned a value of zero at some reference point. Total energy of a system has two groups: *macroscopic* and *microscopic*.

<u>Macroscopic forms of energy</u>: forms of energy that a system posses as a whole with respect to some outside reference frame, such as kinetic and potential energy. The macroscopic energy of a system is related to motion and the influence of some external effects such as gravity, magnetism, electricity, and surface tension.

♦ Kinetic energy: energy that a system posses as a result of its relative motion relative to some reference frame, KE

$$KE = \frac{mV^2}{2} \qquad (kJ)$$

where V is the velocity of the system in (m/s).

 Potential energy: is the energy that a system posses as a result of its elevation in a gravitational field, PE

$$PE = mgz$$
 (kJ)

where g is the gravitational acceleration and z is the elevation of the center of gravity

of the system relative to some arbitrary reference plane.

<u>Microscopic forms of energy</u>: are those related to molecular structure of a system. They are independent of outside reference frames. The sum of microscopic energy is called the *internal energy, U*.

The total energy of a system consists of the kinetic, potential, and internal energies:

$$E = U + KE + PE = U + \frac{mV^2}{2} + mgz$$
 (kJ)

where the contributions of magnetic, electric, nuclear energy are neglected. Internal energy is related to the molecular structure and the degree of molecular activity and it may be viewed as the sum of the kinetic and potential energies of molecules.

- ♦ The sum of translational, vibrational, and rotational energies of molecules is the kinetic energy of molecules, and it is also called the *sensible energy*. At higher temperatures, system will have higher sensible energy.
- ♦ Internal energy associated with the phase of a system is called *latent heat*. The intermolecular forces are strongest in solids and weakest in gases.
- ♦ The internal energy associated with the atomic bonds in a molecule is called *chemical* or *bond energy*. The tremendous amount of energy associated with the bonds within the nucleolus of atom itself is called *atomic energy*.

Energy interactions with a closed system can occur via heat transfer and work.

Fig. 1-4: Forms of energy.

Properties of a System

Any characteristic of a system is called a *property*. In classical thermodynamics, the substance is assumed to be a *continuum*, homogenous matter with no microscopic holes. This assumption holds as long as the volumes, and length scales are large with respect to the intermolecular spacing.

<u>Intensive properties</u>: are those that are independent of the size (mass) of a system, such as temperature, pressure, and density. They are not additive.

<u>Extensive properties</u>: values that are dependant on size of the system such as mass, volume, and total energy U. They are additive.

- Generally, uppercase letters are used to denote extensive properties (except mass m), and lower case letters are used for intensive properties (except pressure P, temperature T).
- ♦ Extensive properties per unit mass are called specific properties, e.g. specific volume (v=V/m).

Fig. 1-5: Intensive and extensive properties of a system.

State and Equilibrium

At a given *state*, all the properties of a system have fixed values. Thus, if the value of even one property changes, the state will change to different one.

In an equilibrium state, there are no unbalanced potentials (or driving forces) within the system. A system in equilibrium experiences no changes when it is isolated from its surroundings.

♦ <u>Thermal equilibrium</u>: when the temperature is the same throughout the entire system.

- ♦ <u>Mechanical equilibrium:</u> when there is no change in pressure at any point of the system. However, the pressure may vary within the system due to gravitational effects.
- <u>Phase equilibrium:</u> in a two phase system, when the mass of each phase reaches an equilibrium level.
- ♦ <u>Chemical equilibrium:</u> when the chemical composition of a system does not change with time, i.e., no chemical reactions occur.

Processes and Cycles

Any change a system undergoes from one equilibrium state to another is called a *process*, and the series of states through which a system passes during a process is called a *path*.

Fig. 6: To specify a process, initial and final states and path must be specified.

Quasi-equilibrium process: can be viewed as a sufficiently slow process that allows the system to adjust itself internally and remains infinitesimally close to an equilibrium state at all times. Quasi-equilibrium process is an idealized process and is not a true representation of the actual process. We model actual processes with quasi-equilibrium ones. Moreover, they serve as standards to which actual processes can be compared.

Process diagrams are used to visualize processes. Note that the process path indicates a series of equilibrium states, and we are not able to specify the states for a non-quasi-equilibrium process.

Prefix iso- is used to designate a process for which a particular property is constant.

- ♦ <u>Isothermal:</u> is a process during which the temperature remains constant
- ♦ <u>Isobaric</u>: is a process during which the pressure remains constant
- ♦ <u>Isometric</u>: is process during which the specific volume remains constant.

A system is said to have undergone a *cycle* if it returns to its initial state at the end of the process.

٧

Fig. 1-7: A four-process cycle in a P-V diagram.

The state of a system is described by its properties. The state of a *simple compressible* system is completely specified by two *independent*, intensive properties.

A system is called <u>simple compressible system</u> in the absence of electrical, magnetic, gravitational, motion, and surface tension effects (external force fields).

<u>Independent properties</u>: two properties are independent if one property can be varied while the other one is held constant.

Pressure

Pressure is the force exerted by a fluid per unit area.
$$N \equiv Pa$$

$$Pressure = \frac{Force}{Area} = \frac{m^2}{a}$$

In fluids, gases and liquids, we speak of *pressure*; in solids this is *stress*. For a fluid at rest, the pressure at a given point is the same in all directions.

The actual pressure at a given position is called the *absolute pressure*, and it is measured relative to absolute vacuum.

gauge pressure = absolute pressure - atmospheric pressure

$$P_{gauge} = P_{abs} - P > P_{atm}P_{vac} = P_{atm}P < P_{atm} - P_{abs}$$

Fig. 9: Absolute, gauge, and vacuum pressures.

In thermodynamics calculations, always use <u>absolute pressure</u>. Most pressure measuring devices are calibrated to read zero in the atmosphere (they measure P_{gauge} or P_{vac}). Be aware of what you are reading!

A device that measures pressure using a column of liquid is called a *Manometer*. The cross sectional area of the tube is not important. The manometer measures the gauge pressure.

Fig. 10: Basic manometer, $P_2=P_1$. $P_1 = P_{atm} + \rho gh$ (kPa)

Bourdon Tube is a device that measures pressure using mechanical deformation. *Pressure Transducers* are devices that use piezoelectrics to measure pressure.

- very accurate and robust
- can measure from 10⁻⁶ to 10⁵ atm
- can measure Pgauge or Pabs

Barometer is a device that measures atmospheric pressure. It is a manometer with a near vacuum on one end

Example 2: Pressure

The piston of a cylinder-piston device has a mass of 60 kg and a cross-sectional area of $0.04~\text{m}^2$, as shown in Fig. 12. The depth of the liquid in the cylinder is 1.8 m and has a density of 1558 kg/m³. The local atmospheric pressure is 0.97 bar, and the gravitational acceleration is $9.8~\text{m/s}^2$. Determine the pressure at the bottom of the cylinder.

Solution: the pressure at the bottom of the cylinder can be found from the summation of the forces due to atmospheric pressure, piston weight, and the weight of the liquid in the cylinder.

$$\begin{aligned} W_{bottom} &= P_{atm}\,A + W_{liquid} + W_{Piston} \\ P_{bottom} &= \\ P_{atm} &+ \frac{mg}{A} + \rho g h \end{aligned}$$

Fig. 12: Sketch for example 2.

Temperature

Temperature is a pointer for the direction of energy transfer as heat.

Fig. 13: Heat transfer occurs in the direction of higher-to-lower-temperature.

When the temperatures of two bodies are the same, *thermal equilibrium* is reached. The equality of temperature is the only requirement for thermal equilibrium.

The 0th law of thermodynamics: states that if two bodies are in thermal equilibrium with a third body, they are also in thermal equilibrium with each other.

The 0th law makes a thermometer possible.

In accordance with the 0th law, any system that possesses an equation of state that

relates temperature T to other accurately measurable properties can be used as a thermometer e.g. an ideal gas obeys the equation of state:

$$T = \frac{PV}{mR}$$

<u>Experimentally obtained Temperature Scales</u>: the *Celsius* and *Fahrenheit* scales, are based on the melting and boiling points of water. They are also called two-point scales.

Conventional thermometry depends on material properties e.g. mercury expands with temperature in a repeatable and predictable way

<u>Thermodynamic Temperature Scales</u> (independent of the material), the Kelvin and Rankine scales, are determined using a constant volume gas thermometer.

CHAPTER 1 INTRODUCTION AND BASIC CONCEPTS

Objectives

- Identify the unique vocabulary associated with thermodynamics through the precise definition of basic concepts to form a sound foundation for the development of the principles of thermodynamics.
- Review the metric SI and the English unit systems.
- Explain the basic concepts of thermodynamics such as system, state, state postulate, equilibrium, process, and cycle.
- Review concepts of temperature, temperature scales, pressure, and absolute and gage pressure.
- Introduce an intuitive systematic problem-solving technique.

2

THERMODYNAMICS AND ENERGY

- Thermodynamics: The science of energy.
- Energy: The ability to cause changes.
- The name thermodynamics stems from the Greek words therme (heat) and dynamis (power).
- Conservation of energy principle: During an interaction, energy can change from one form to another but the total amount of energy remains constant.
- Energy cannot be created or destroyed.
- The first law of thermodynamics: An expression of the conservation of energy principle.
- The first law asserts that energy is a thermodynamic property.

FIGURE 1-1 Energy council be created or descroyed, it can only change forms (the first law).

- The second law of thermodynamics: It asserts that energy has quality as well as quantity, and actual processes occur in the direction of decreasing quality of energy.
- Classical thermodynamics: A macroscopic approach to the study of thermodynamics that does not require a knowledge of the behavior of individual particles.
- It provides a direct and easy way to the solution of engineering problems and it is used in this text.
- Statistical thermodynamics: A microscopic approach, based on the average behavior of large groups of individual particles.
- It is used in this text only in the supporting role.

FIGURE 1-2 Conservation of energy principle for the formen body

FIGURE 1-1 Heat flows in the direction of decreasing lemperature.

IMPORTANCE OF DIMENSIONS AND UNITS

- Any physical quantity can be characterized by dimensions.
- The magnitudes assigned to the dimensions are called units.
- Some basic dimensions such as mass m, length L, time t, and temperature T are selected as primary or fundamental dimensions, while others such as velocity V, energy E, and volume V are expressed in terms of the primary dimensions and are called secondary dimensions, or derived dimensions.
- Metric SI system: A simple and logical system based on a decimal relationship between the various units.
- English system: It has no apparent systematic numerical base, and various units in this system are related to each other rather arbitrarily.

The seven fundamen dimensions and their	tal (or primary) runits in SI
Dimension	Unit
Length	meter (m)
Mass	kilogram (kg
Titoe	second (s)
Temperature	kelvin (K)
Electric current	ampere (A)
Amount of light	candela (co.
Amount of matter	mole (mol)

	s in SI units
Autople	Prefix
O24 H	yotta, Y
021	zetta, Z
Otto	exa, E
Oth	peta, P
013	iera, T
O ₀	great G
04	mega, M
07	kito, k
02	hecto, h
O ₁	desa, da
0	deci, d
0-2	centi, c
0.3	mäli, m
0-6	micro, p
D-9	nano, n
0-13	pico, p
0-13	tento, f
0 **	atto, a
0-21	zepto, z
0-74	yocto, y

Dimensional homogeneity

All equations must be dimensionally homogeneous.

Unity Conversion Ratios

All nonprimary units (secondary units) can be formed by combinations of primary units. Force units, for example, can be expressed as

$$N = kg \frac{m}{s^2}$$
 and $ibf = 32.174 lbm \frac{ft}{s^2}$

They can also be expressed more conveniently as unity conversion ratios as

$$\frac{N}{kg \cdot m/s^2} = 1 \quad \text{ and } \quad \frac{lbf}{32.174 \ lbm \cdot ft/s^2} = 1$$

Unity conversion ratios are identically equal to 1 and are unitless, and thus such ratios (or their inverses) can be inserted conveniently into any calculation to properly convert units.

SYSTEMS AND CONTROL VOLUMES

- System: A quantity of matter or a region in space chosen for study.
- Surroundings: The mass or region outside the system
- Boundary: The real or imaginary surface that separates the system from its surroundings.
- · The boundary of a system can be fixed or movable.
- Systems may be considered to be closed or open.
- Closed system (Control mass): A fixed amount of mass, and no mass can cross its boundary

continuum. The continuum idealization allows us to

Continuum

- treat properties as point functions and to assume the properties vary continually in space with no jump This idealization is valid as long as the size of the system we deal with is large relative to the space between the
- This is the case in practically all problems.
- In this text we will limit our consideration to substances that can be modeled as a continuum.

FIGURE 1-24 Despite the relatively large gaps between molecules, a gas can usually be treated as a continuum because of the very large number of molecules even in an extremely small volume.

DENSITY AND SPECIFIC GRAVITY Specific gravity: The ratio of the density of a substance to the density of some standard substance Density (kg/m^3) ρ_{160} at a specified temperature (usually water at 4°C). $\frac{V}{m} = \frac{1}{\rho}$ TABLE 1-3 Specific weight: The weight of a unit volume of a substance. Specific gravities of some (N/m^3) Substance $\gamma_* = \rho g$ $U = 12 \text{ m}^2$ m = 3 kg1.0 1.05 1.025 0.7 0.79 13.6 Water Blood Seawater Density is Guscalor Guscline Ethyl alcohol Mercury Wood Gold Bones mass per unit volume: $p = 0.25 \text{ kg/m}^3$ 0.3-0.9 19.2 1.7-2.0 specific volume $\frac{1}{\rho} = 4 \text{ m}^3/\text{kg}$ is volume per unit mass.

STATE AND EQUILIBRIUM

- Thermodynamics deals with equilibrium states.
- Equilibrium: A state of balance.
- In an equilibrium state there are no unbalanced potentials (or driving forces) within the system.
- Thermal equilibrium: If the temperature is the same throughout the entire system.
- Mechanical equilibrium: If there is no change in pressure at any point of the system with time.
- Phase equilibrium: If a system involves two phases and when the mass of each phase reaches an equilibrium level and stays there.
- Chemical equilibrium: If the chemical composition of a system does not change with time, that is, no chemical reactions

32% tat Before

FIGURE 1-27 A closed system reaching thornal equilibrium.

The State Postulate

- The number of properties required to fix the state of a system is given by the state postulate:
 - √ The state of a simple compressible system is completely specified by two independent, intensive properties.
- Simple compressible system: If a system involves no electrical, magnetic. gravitational, motion, and surface tension effects.

FIGURE 1-28 The state of nitrogen is fixed by two independent, intensive properties.

PROCESSES AND CYCLES

Process: Any change that a system undergoes from one equilibrium state to

Path: The series of states through which a system passes during a process ratn: The senes of states through which a system passes during a process.

To describe a process completely, one should specify the initial and final states, as well as the path it follows, and the interactions with the surroundings.

Quasistatic or quasi-equilibrium process: When a process proceeds in such a manner that the system remains infinitesimally close to an equilibrium state at all times.

states 1 and 2 and the process path.

FIGURE 1-30 Quasi-equilibrium and novegrass equilibrium compression process

- Process diagrams plotted by

- Isobaric process: A process during which the pressure P remains constant.
- Isochoric (or isometric) process: A process during which the specific volume ν remains constant.
- Cycle: A process during which the initial and final states are identical.

FIGURE 1-31 The P-V diagram of a compression

The Steady-Flow Process

- The term steady implies no change with time. The opposite of steady is unsteady, or transient.
- A large number of engineering devices operate for long periods of time under the same conditions, and they are classified as steady-flow devices.
- Steady-flow process: A process during which a fluid flows through a control volume steadily.
- Steady-flow conditions can be closely approximated by devices that are intended for continuous operation such as turbines, pumps, boilers, condensers, and heat exchangers or power plants or refrigeration systems.

During a steady-flow process, fluid properties within the control volume may change with position but not with

TEMPERATURE AND THE ZEROTH LAW OF THERMODYNAMICS

- The zeroth law of thermodynamics: If two bodies are in thermal equilibrium with a third body, they are also in thermal equilibrium with each other.
- By replacing the third body with a thermometer, the zeroth law can be restated as two bodies are in thermal equilibrium if both have the same temperature reading even if they are not in contact.

FIGURE 1–34

Two bodies reaching thermal equilibrium after being brought into contact in an isolated enclosure.

27

Temperature Scales

- All temperature scales are based on some easily reproducible states such as the freezing and boiling points of water: the ice point and the steam point.
- Ice point: A mixture of ice and water that is in equilibrium with alr saturated with vapor at 1 atm pressure (0°C or 32°F).
- Steam point: A mixture of liquid water and water vapor (with no air) in equilibrium at 1 atm pressure (100°C or 212°F).
- · Celsius scale: in SI unit system
- · Fahrenheit scale: in English unit system
- Thermodynamic temperature scale: A temperature scale that is independent of the properties of any substance.
- Kelvin scale (SI) Rankine scale (E)
- A temperature scale nearly identical to the Kelvin scale is the ideal-gas temperature scale. The temperatures on this scale are measured using a constant-volume gas thermometer.

The International Temperature Scale of 1990 (ITS-90)

The International Temperature Scale of 1990 supersedes the International Practical Temperature Scale of 1968 (IPTS-68), 1948 (ITPS-48), and 1927 (ITS-27).

The ITS-90 is similar to its predecessors except that it is more refined with updated values of fixed temperatures, has an extended range, and conforms more closely to the thermodynamic temperature scale.

On this scale, the unit of thermodynamic temperature *T* is again the kelvin (K), defined as the fraction 1/273.16 of the thermodynamic temperature of the triple point of water, which is sole defining fixed point of both the ITS-90 and the Kelvin scale and is the most important thermometric fixed point used in the calibration of thermometers to ITS-90. The unit of Celsius temperature is the degree Celsius (*C).

The ice point remains the same at 0°C (273.15 K) in both ITS-90 and ITPS-68, but the steam point is 99.975°C in ITS-90 whereas it was 100.000°C in IPTS-68.

The change is due to precise measurements made by gas thermometry by paying particular attention to the effect of sorption (the impurities in a gas absorbed by the walls of the bulb at the reference temperature being desorbed at higher temperatures, causing the measured gas pressure to increase).

PRESSURE Pressure: A normal force exerted by a fluid per unit area $1 \text{ Pa} = 1 \text{ N/m}^2$ $1~{\rm har} = 10^6~{\rm Pa} = 0.1~{\rm MPa} = 100~{\rm kPa}$ $1\,a_{BB}=104,325\,P_B=104,325\,kP_B=1.61325\,bars$ $1 \log U cm^2 = 9.807 \; N/cm^2 = 9.807 \times 10^4 \; N/m^2 = 9.807 \times 10^4 \; Pa$ 1111 - 0.950T hor P=3 psi = 6.9679 stes $P = \sigma_n \approx \frac{2V}{\Lambda_{\rm box}} = \frac{150~{\rm Bef}}{50~{\rm fm}^2} \approx 3~{\rm pri}$ FIGURE 1-39 The normal stress (or "pressure") on the forc of a clubby person is much greater than on the fort of a sline basic pressure gages.

- Absolute pressure: The actual pressure at a given position. It is measured relative to absolute vacuum (i.e., absolute zero pressure). Gage pressure: The difference between the absolute pressure and the local atmospheric pressure. Most pressure-measuring devices are calibrated to read zero in the atmosphere, and so they indicate gage pressure.
- Vacuum pressures: Pressures below atmospheric pressure.

Throughout this text, the pressure P will denote absolute
pressure unless
specified
otherwise.

Variation of Pressure with Depth

 $\Delta P = P_2 - P_1 = \rho g \Delta z = \gamma, \Delta z$

 $= P_{sim} + \rho g h$ or $P_{page} = \rho g h$

Free-body diagram of a rectangular fluid element in equilibrium.

When the variation of density with elevation is known

 $\Delta P = P_2 - P_1 =$

FIGURE 1-42 The pressure of a fluid at rest increases with depth cas a result of added weights.

In a room filled with a gas, the variation of pressure with height is negligible.

Pascal's law: The pressure applied to a confined fluid increases the pressure throughout by the same amount. $P_1 = P_2 \quad \rightarrow \quad \frac{F_1}{A_1} = \frac{F_2}{A_2} \quad \rightarrow \quad \frac{F_2}{F_1} = \frac{A_2}{A_1}$

The area ratio A₂/A₁ is called the *ideal mechanical* advantage of the hydraulic

FIGURE 1–47
Lifting of a large weight by a small force by the application of Pascal's law. A common example is a hydraulic jack.

PRESSURE MEASUREMENT DEVICES

FIGURE 1-48
The basic baroneter.

 $P_{\rm atm}=\rho g h$

The Barometer

- Atmospheric pressure is measured by a device called a barometer; thus, the atmospheric pressure is often referred to as the barometric pressure.
- A frequently used pressure unit is the *standard atmosphere*, which is defined as the pressure produced by a column of mercury 760 mm in height at 0°C ($\rho_{\rm fig}$ = 13,595 kg/m³) under standard gravitational acceleration (g = 9.807 m/s²).

L24

PROPERTIES OF GASES AND GAS MIXTURES

Dr Sharad D. Patil Associate Professor, Department of Mechanical Engineering, Rajarambapu Institute of Technology

COURSE OUTCOMES

- · Explain different laws associated with gas and gas mixtures
- Define the quantities used to describe the composition of a mixture, such as mass fraction, mole fraction and a volume fraction.
- Derive state, Vander Waal's, Clausius Clapeyron equation

INTRODUCTION

Gases have a number of properties that are very different from liquids and solids:

- Gases are compressible
 Gases exert a pressure
 Gase pressure depends on the amount of confined gas
- Gases fill their container
 Gases mix freely with each other
- 6) Gas pressure increases with temperature
- · The properties of a gas mixture obviously depend on the properties of the individual gases (called components or constituents) as well as on the amount of each gas in the mixture

Gas Laws

Boyle's Law:

 $P_1V_1 = P_2V_2$ (when $T_1 = T_2$)

Charles' Law:

 $V_1/T_1 = V_2/T_2$ (when $P_1 = P_2$)

Gay - Lussac's Law:

 $P_1/T_1 = P_2/T_2$ (when $V_1 = V_2$)

The three gas laws are often used in a single equation called the

combined gas law

 $\frac{PV}{T}$ = constant or $\frac{P_1V_1}{T_1} = \frac{P_2V_2}{T_2}$ (fixed amount)

When using this equation the temperature must always be in kelvins

Example: What will be the final pressure of a sample of oxygen with a volume of 850 m³ at 6.55 bar and 25.0°C if it is heated to 80.0°C and given a final volume of 1066 m²?

ANALYSIS Use the combined gas law with temperature in kelvins. SOLUTION:

$$P_2 = P_1 \times \frac{V_1}{V_2} \times \frac{T_2}{T_1}$$

= 6.55 × $\frac{850 \text{ m}^3}{1066 \text{ m}^3} \times \frac{(80.0 + 273.2)\text{K}}{(25.0 + 273.2)\text{K}}$

 $= 6.19 \, \text{bar}$

- The law of combining volume states:
 - When gases react at the same temperature and pressure, their combining volumes are in ratios of simple, whole
 - numbers
 Example:

hy drogen + chlorine → hy drogen chloride 1 volume 1 volume 2 volumes

- Amedeo Avogadro studied this and devised Avogadro's principle:
 - W hen measured at the same temperature and pressure, equals volumes of gases contain equal number of moles

- · A corollary to Avogadro's principle is:
 - The volume of a gas is directly proportional to its number of moles, n

 $V \propto n$ (at constant T and P)

- Thus, the volume of one mole of any gas at standard temperature and pressure (STP) or 0°C and 1 atm is 22.4 L (a constant for all ideal gases)
- This is called the standard molar volume of a gas

	n = number of moles
• The combined gas law can be	$n = \frac{m}{M}$
generalized to include	M = molecularweight
changes in the	m = mass
number of moles of	$PV = \frac{mRT}{M}$
sample	$PV = mR_gT$
The ideal gas	
law is	

- The molecular mass is obtained by taking the *ratio* of mass to moles, which could be determined using the ideal gas law
- Gas densities (d), a ratio of gas mass to volume, can be calculated by taking the ratio of the molar mass to molar volume.
 - Example: The molar mass of oxygen is 32.0 g/mol. What is the density of oxygen at STP?

$$d_{\rm O_2} = \frac{32.0 \text{ g/mol}}{22.4 \text{ L/mol}} = 1.42 \text{ g L}^{-1}$$

• For a mixture of A, B, ... substances, the mole fraction of substance i(y, y) is

$$y_i = \frac{n_A}{n_A + n_B + ... + n_Z}, \quad n_i = \text{moles of } i$$
This provides a convenient way to `pertitio

 This provides a convenient way to `partition' the total pressure of a mixture of gases

Dalton's law of partial pressures:

It states: the total pressure of a mixture of gases is the sum of their individual partial pressures

Mole fraction

It is the ratio of the number of moles of a given component to the total moles of all components

 For a system of only gases, mole fractions and partial pressure partition the total pressure in the same fashion

$$P_{lotal} = P_A + P_B + \dots$$

$$= P_{Total} V_A + P_{Total} V_B + \dots$$

$$1 = V_A + V_B + \dots$$

- Gases are often collected over water in the laboratory
- These (collected) gases are saturated with water

The space above any liquid contains some of the liquid's vapor
 The pressure this vapor exerts is called the vapor pressure

As the gas bubbles through the water, water vapor gets into the gas so the total pressure inside the bottle includes the partial pressure of the water vapor.

To determine the properties of a mixture, we need to know the composition of the mixture as well as the properties of the individual components. There are two ways to describe the composition of a mixture either by specifying the number of moles of each component, called molar analysis, or by specifying the mass of each component, called gravimetric analysis. gravimetric analysis molaranalysis

Mass of substance (m)

It is expressed in terms of the mole number (n) and molar mass(M)

$$m = n \times M$$

Universal Gas constant (Ru) = 8.314 kJ/kg mol K

Gas constant (R)

$$R = \frac{R_u}{M}$$

Molar mass of mixture can be expressed as:

$$M_m = \frac{m_m}{n_m} = \frac{\sum m_i}{n_m} = \frac{\sum n_i \times m_i}{n_m}$$

P-V-T BEHAVIOR OF GAS MIXTURES

- •An ideal gas is defined as a gas whose molecules are spaced far apart so that the behavior of a molecule is not influenced by the presence of other molecules—a situation encountered at low densities.
- We also mentioned that real gases approximate this behavior closely when they are at a low pressure or high temperature relative to their critical-point values
- _

IDEAL AND REAL GASES

Ideal gas

The P-v-T behavior of an ideal gas is expressed by the simple relation

(P*V=R*T)

which is called the ideal- gas equation of state

Real Gas

The P-v-T behavior of real gases is expressed by more complex equations of state or by (P*V=Z*R*T)

where Z is the compressibility actor

- When two or more ideal gases are mixed, the behavior of a molecule normally is not influenced by the presence of other similar or dissimilar molecules and therefore a nonreacting mixture of ideal gases also behaves as an ideal gas.
- When a gas mixture consists of real (nonideal) gases, however, the prediction of the P-v-T behavior of the mixture becomes rather involved.

MIXTURES LAWS

The prediction of the P-v-T behavior of gas mixtures is usually based on two models:

Dalton's law of additive pressures:

The pressure of a gas mixture is equal to the sum of the pressures each gas would exert if it existed alone at the mixture temperature and volume.

and volume $P_{T_0, \{a\}} = P_A + P_{\bar{a}} + \dots$ $P_m = \sum_{i=1}^{m} P(T_m, V_m) \qquad P_i = \text{component pressure}$

• Note: that equexact for ideal gases, approximate for real gases

 $\bullet P_{\iota}$ = pressure fraction

P

Amagat's law of additive volumes:

The volume of a gas mixture is equal to the sum of the volumes each gas would occupy if it existed alone at the mixture temperature and pressure

• $V_m = \sum_{i=1}^k V_i (T_m : P_m)$ V_i = component volume

ullet Note: that equipment exact for ideal gases, approximate for real gases L = volume fraction

 \bullet V_m

Example
$$m = n \times M$$

$$m_{Total} = m_A + m_B + \dots$$

$$m_{Total} = 3 + 5 + 12$$

$$m_{total} = 3 + 5 + 12$$

$$m_{total} = \frac{m_{O2}}{m_{o1}} = \frac{3}{32} = 0.094 kmol$$

$$m_{total} = 1.023 kmol$$

$$y_{O2} = \frac{n_{O2}}{n_{total}} = \frac{0.094}{1.023} = 0.092$$

IDEAL-GAS MIXTURES

• For ideal gases, Pi and Vi can be related to mole fraction(y) by using the ideal-gas relation for both the components and the gas mixture:

• Dalton's law: $\frac{P(T,V)}{P} = \frac{n \cdot R \cdot T}{n \cdot R \cdot T} \cdot \frac{n}{n} \cdot y$

•Amagat'slaw: $V = \frac{n \cdot R \cdot T}{v} = \frac{n \cdot R \cdot T}{n \cdot R \cdot T} = \frac{n}{n} = y$

• Therefore, $\frac{P}{P} = \frac{V}{V} = \frac{n}{n} = y$

• And the quantity $P = y * P_m$ is called partial pressure

• The quantity V = y * V is called partial volume

REAL-GAS MIXTURES

- Dalton's law of additive pressures and Amagat's law of additive volumes can also be used for real gases, often with reasonable accuracy but the component pressures or component volumes should be evaluated from relations that take into account the deviation of each component from ideal-gas behavior
- ●1-Use ideal gas equation with compressibility factor (Z)

$$P*V = Z*N*R*T$$

 compressibility factor of mixture(Z_m) can expressed in terms of compressibility factor of the individual gas(Z_n) by applying

REDUCED PROPERTIES AND LAW OF CORRESPONDING STATES:

34

• Remarked pressures and temperatures with respect to its critical pressure and remarkative, and press behave very react some $P_r = \frac{P}{P_r} \text{ and } I_r = \frac{I}{I_{rr}}$ There Press Is are reduced pressure and remarkative, the compressibility factor for all gives is approximately some fine to called the law of corresponding states.

OTHER EQUATION OF STATE:

- 37. Ideal-gas equation of state cannot be applied over a wide range, though it is very simple.
 - Hence, it is vital to have equation of state that can accurately predict Pv-T behavior of substances accurately over a wide range with no limitations.
 - These equations are complicated but gives accurate results over a wide range as compared to ideal-gas equation of state.
 - -van der Waals Equation of State
 - -Beattle-Bridgeman Equation of State
 - -Benedict, Webb-Rubin Equation of State
 - -Virial Equation of State
 - -Redlich-Kwong Equation of State

- 0		
$(P - \frac{1}{pn})(P - B)$	j = RT	
e considers two effi	ects which were n	ot considered in ideal-gar
accounts for inter-	nolecular forces of	attraction and b accounts
uticales.		
$a = \frac{27R^2V_{ii}}{610cc}$ and	$b = \frac{RI_{s+}}{2R_{s+}}$	
547.0	orei	
	ecounts for inter- nanciales	$a = \frac{27R^2\Gamma^2_{ii}}{and b} = \frac{RI_{ii}}{a}$

POLL

$$P_* = \sum_{n=1}^{r} P[T_n : V_n] = \frac{Z_n \cdot c_n}{V_n} \cdot \frac{R}{r} \cdot T_n = \sum_{n=1}^{r} \frac{Z_n \cdot c_n}{V_n} \cdot \frac{R}{r} \cdot T_n = Z_n \cdot \sum_{n=1}^{r} \frac{Z_n \cdot c_n}{V_n} = Z_n \cdot \sum_{n=1}^{r} \frac{Z_n \cdot c_n}{V_n} \cdot Z_n = Z_n \cdot \sum_{n=1}^{r} \frac{Z_n \cdot c_n} \cdot Z_n = Z_n \cdot Z_n \cdot Z_n = Z_n \cdot Z_n \cdot Z_n = Z_n \cdot Z_n$$

- The compressibility-factor approach, in general, gives more accurate results when the Zi are evaluated by using Amagat's law instead of Dalton's law. This is because Amagat's law involves the use of mixture pressure Pm, which accounts for the influence of intermolecular forces between the molecules of different gases. Therefore,
- Dalton's law is more appropriate for gas mixtures at lowpressures.
- Amagat's law is more appropriate at high pressures

Kay's rule

Another approach for predicting the P-v-T behavior of a gas mixture is to treat the gas mixture as a pseudopure substance, involves the use of a pseudocritical pressure (Pcr)m and pseudocritical temperature (Tcr)m for the mixture, defined in terms of the critical pressures and temperatures of the mixture components as:

$$P_{cr,m}^- = \sum_{i=1}^k y_i P_{cr,i}$$
 $T_{cr,m}^- = \sum_{i=1}^k y_i^* T_{cr,i}$

Por Tou

● Van der Waals Equation of State :

Van der Waals intended to improve the ideal-gas equation of state by including two of the effects not considered in the deal-gas model: the intermolecular attraction forces and the volume occupied by the molecules themselves. The term a/v2 accounts for the intermolecular forces, and b accounts for the volume occupied by the gas molecules

$$\left(P + \frac{a}{V^2}\right)(V - b) = RT$$

$$a = \frac{27}{64} \frac{R^2 T_{ee}^2}{P_{ee}}$$
 and $b = \frac{R}{8} \frac{T}{P_{ee}}$

 The constants a and b can be determined for any substance from the critical point data alone

Beattie-Bridgeman Equation of State:

The Beattle- Bridgeman equation is known to be reasonably accurate for densities up to about 0.8pcr, where pcr is the density of the substance at the critical point.

$$P = \frac{R_{*}^{T}}{V^{2}} \left(1 - \frac{C}{V - T}, \right) \left(\overline{V} + B \right) - \frac{A}{\overline{V}^{2}}$$

$$A = A_{0} \left(1 - \frac{B}{V} \right) \qquad B = B_{0} \left(1 - \frac{B}{V} \right)$$

The constants appearing in the above equation are given in Table for various substances.

GR White PTL	in SPa. 7 i				14 Ma - million		motents in the f	estin-
Gas		A			- 6-			
Air Aigno, Ar Carbon diointe Hellom, He Hydrogen, Hy	. 00,	191.8441 130.7862 507.2836 2.1686 20.0117	0.0 0.0 0.0 -0.3	129/83 1232# 17132 15904 95508	0.04611 0.03991 0.10496 0.03094	-6.00 6.0 6.0 6.0 6.0 -6.04	285	4.34 × 10 5.99 × 10 6.60 × 10 40 508
(b) When P ts.)	n sPu, 7 i	s in military	0.0 inning, Frontene	12562 History Daviso	SIMEA Franchisectus	0.00 Explorely Nasion, 3		A BO X 10
Degger, D ₂ Point Seder 1, 1960; a. H. Sen	n sPu, 7 i	151 0a67 e nowir r. Si y in seltings r as totomi	0.0 inning, Frontene	12562 History Daviso	SIMEA Franchisectus	0.00 Explorely Nasion, 3	6206 1616 / New York 20	A BO X SO Heredick
Degger, D ₂ Points factor J. 1980, a. 46, ben (b) When P. s. 1980s Rubin e Ges n Biddene, C ₂ H ₁₀	n sPu, 7 i	ESE DAGE e mover il Si y in politico	0.0 inning, Francisco I, Tita Ot K, as	1256.2 nto-if Dissio nd R _c = 9.3	SIMEA Franchisectus	0.00 Inplents seem, 3 of - X, the eight G.	A206 Wall Mew Yolk Joh Constants in the	A BO X SO HINGA Sun Benedict-
Degger, D ₂ Points Selber J. 1980; a. et. sen (b) When P is 1 9900 Bullion of Ges r: Bullion Cuffice Cuffice discolor, DO ₃	n siths, if it qualiton set	151 OAG7 otherwit I. S o in millional or as hillions As	0.0 inning, Francisco E, TSLOS E, so 2	12562 100-7 December 10 (1256) 104 R _c = 9.3	0.04024 if framelysecus (14.694 - m ² 5m) E	0.00 Inplents seem, 3 of - X, the eight G.	6208 If all This bob an constants in the	# 80 X 10* # Way # Sun Barred Ct- 9 0.0340
Degger, D ₂ Principlester; 1980; a. 46, tell Obst. Button of Ges n: Buttone. CuH _{CS} Cartion	in kPs, 71 quatron and 150.66	254 DMG7 or trover 1. Si is in military or as fortown As 2023.4	0.1 mmg, Fooders I, 716-01 K, to 2 0.0399998	10562 100 of Dece 104 R _c = 9.3 8 _c 0.12434	0.04624 of themographics (14 kPa - m ² 500 E 3.206 × 10 ⁷	0.00 represtrations, 3 of - X, the eight G, 1.006 × 10 ⁵	1208 104 Min Tok 30 constants in the 1.101 × 10 7 8.470 × 10 7	6.80 × 10** Will 5 50** Benedick- 9 0.0340 0.0053
Degger, D ₂ Printle Tarder J. 1980; a. 46, tell 1980; b. 46, tell 1980; Bullen e Gas Culfus Gaston Guston, CO ₃ Carton Carton	190.66 13.66 3.71	252 0867 or mover 1. 5 or in military or as Tottown A ₂ 2021.4 277.30 197.92	0.0 (, 716-018, a 2 0.009998 0.007210	00-FDeed 04 R _c = 8.3 8. 0.12494 0.04991	0.04624 of frembrency (14.07g - m ² 5cm E 3.205 × 10 ⁷ 1.511 × 10 ⁶	0.00 represtir seems, 3 of - X, the eight G, 1.006 × 10 ⁴ 1.404 × 10 ⁴	A208 With Tries Tub. 30 constants in the # 3.101 × 10° ³	Benedict-

PRO PERTIES OF GAS MIXTURES IDEAL AND REAL

- GASES

 The extensive properties of a mixture are determined by adding the properties of the components
- The intensive properties of a mixture are determined by adding weighted average
- The relations given below are exact for ideal-gas mixtures, and approximate for real-gas mixtures
- they are also applicable to nonreacting liquid and solid solutions especially when they form an "ideal solution.

The total internal energy, enthalpy, and entropy of a gas mixture can be expressed, respectively as

•
$$U_{i} = \sum_{i=1}^{k} U_{i} = \sum_{i=1}^{k} m_{i} u_{i} = \sum_{i=1}^{k} N_{i} \overline{u}_{i}^{(K)}$$

•
$$H = \sum_{i=1}^{k} H_i = \sum_{i=1}^{k} m_i h_i = \sum_{i=1}^{k} N_i \overline{h_i}$$
 (KJ)

$$S_m = \sum_{i=0}^k S_i = \sum_{i=1}^k m_i S_i = \sum_{i=1}^k N_i \overline{S}_i$$
 (KJ/K)

 The changes in internal energy, enthalpy and entropy of a gas mixture during a process can be expressed,

$$\bullet \Delta U_{m} = \sum_{i=1}^{k} \Delta U_{i} = \sum_{i=1}^{k} m_{i} \Delta u_{i} = \sum_{i=1}^{k} n_{i} \Delta \overline{u_{i}} \quad (K)$$

$$\bullet \Delta H_{m} = \sum_{i=1}^{k} \Delta H_{i} = \sum_{i=1}^{k} m_{i} \Delta h_{i} = \sum_{i=1}^{k} n_{i} \Delta \overline{h_{i}}$$
 (KJ)

$$\bullet \Delta S_m = \sum_{i=1}^k \Delta S_i = \sum_{i=1}^k m_i \Delta S_i = \sum_{i=1}^k n_i \Delta S_i^-$$
 (KJ/K)

•The internal energy, enthalpy, and entropy of a mixture per unit mass or per unit mole of the mixture can be determined by dividing the equations above by the mass or the mole number of the mixture

$$u_m = \sum_{i=1}^{n} n f(u_i)$$
 (KJ/Kg) and $\overline{u}_m = \sum_{i=1}^{n} v_i \overline{u}_i$

•
$$h_m = \sum_{i=1}^{k} n y f_i h_i$$
 (KJ/kg) and $\overline{h}_m = \sum_{i=1}^{k} y_i \overline{h}_i$ (KJ/kmoi)

(KJ/Kmol)

•
$$S_m = \sum_{i=1}^{n} n y^i S_i$$
 (K)/kg K) and $S_m = \sum_{i=1}^{n} y^i S_i$ (K)/kmol K)

• the specific heats of a gas mixture can be expressed as:

•
$$c_{p,n} = \sum_{i=1}^{k} m f_i c_{p,i}$$
 (Kj/kg.K) and $\bar{c}_{p,n} = \sum_{i=1}^{k} y_i \bar{c}_{p,i}$ (KJ/kmol.k)

IDEAL-GAS

- All gases that comprise a mixture at a high temperature and low pressure relative to the critical point values of individual gases can be treated as ideal gases.
- Gibbs-Dalton law the properties of a gas are not influenced by the presence of other gases, and each gas component in the mixture behaves as ideal gas if it exists alone at the mixture temperature Tm and mixture volume Vm.
- the h, u, cv, and cp of an ideal gas depend on temperature only and are independent of the pressure or the volume of the ideal-gas mixture.
- Evaluation of u or h of the components of an ideal-gas mixture during a process is relatively easy since it requires only a knowledge of the initial and final temperatures
- evaluating the s of the components since the entropy of an ideal gas depends on the pressure or volume of the component as well as on its temperature.

The entropy change of individual gases in an ideal-gas mixture during a process can be determined from $\Delta s_i = s_{i,2}^* - s_{i,1}^o - R_i \ln \frac{P_{i,2}}{P_{i,1}} \cong c_{si} \ln \frac{T_{i,2}}{T_{i,1}} - R_i \ln \frac{P_{i,2}}{P_{i,1}}$ $\Delta \overline{s}_i = \overline{s}_{i,2}^o - s_{i,1}^o - R_u \ln \frac{P_{i,2}}{P_{i,1}} \cong \overline{c}_{si} \ln \frac{T_{i,2}}{T_{i,1}} - R_u \ln \frac{P_{i,2}}{P_{i,1}}$

• Note: $P_{i,2} = y_{i,2} P_{m,2}$

 $P_{i,1} = y_{i,1} P_{m,1}$

REAL-GAS MIXTURES

- When the components of a gas mixture do not behave as ideal gases, the analysis becomes more complex
- Othe properties of real (nonideal) gases such as u, h, cv, and cp depend on the pressure (or specific volume) as well as on the temperature
- The diffrence between ideal gas and real gas is the influence of the molecules of different gases on each other

Thanks For Your Patience And Attention...